scholarly journals Breast Cancer-Derived Microvesicles Are the Source of Functional Metabolic Enzymes as Potential Targets for Cancer Therapy

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 107
Author(s):  
Yousef Risha ◽  
Vanessa Susevski ◽  
Nico Hüttmann ◽  
Suttinee Poolsup ◽  
Zoran Minic ◽  
...  

Membrane-derived extracellular vesicles, referred to as microvesicles (MVs), have been proposed to participate in several cancer diseases. In this study, MV fractions were isolated by differential ultracentrifugation from a metastatic breast cancer (BC) cell line MDA-MB-231 and a non-cancerous breast cell line MCF10A, then analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. A total of 1519 MV proteins were identified from both cell lines. The data obtained were compared to previously analyzed proteins from small extracellular vesicles (sEVs), revealing 1272 proteins present in both MVs and sEVs derived from the MDA-MB-231 cell line. Among the 89 proteins unique to MDA-MB-231 MVs, three enzymes: ornithine aminotransferase (OAT), transaldolase (TALDO1) and bleomycin hydrolase (BLMH) were previously proposed as cancer therapy targets. These proteins were enzymatically validated in cells, sEVs, and MVs derived from both cell lines. The specific activity of OAT and TALDO1 was significantly higher in MDA-MB-231-derived MVs than in MCF10A MVs. BLMH was highly expressed in MDA-MB-231-derived MVs, compared to MCF10A MVs. This study shows that MVs carry functional metabolic enzymes and provides a framework for future studies of their biological role in BC and potential in therapeutic applications.

Author(s):  
Zhaoqing Li ◽  
Wenying Zhuo ◽  
Lini Chen ◽  
Xun Zhang ◽  
Cong Chen ◽  
...  

Drug resistance is a daunting challenge in the treatment of breast cancer, making it an urgent problem to solve in studies. Cell lines are important tools in basic and preclinical studies; however, few breast cell lines from drug-resistant patients are available. Herein, we established a novel HER2-positive breast cancer cell line from the pleural effusion of a drug-resistant metastatic breast cancer patient. This cell line has potent proliferative capability and tumorigenicity in nude mice but weak invasive and colony-forming capability. The molecular subtype of the cell line and its sensitivity to chemotherapeutics and HER2-targeting agents are different from those of its origin, suggesting that the phenotype changes between the primary and metastatic forms of breast cancer.


2021 ◽  
pp. 68-71
Author(s):  
Y Risha ◽  
◽  
V Susevski ◽  
N Hüttmann ◽  
S Poolsup ◽  
...  

The aim of the research. To examine the proteomic profi le of breast cancer exosomes. Material and methods. Cell lines used for this study were MDA-MB-231 female epithelial breast cancer cells (ATCC HTB-26) and MCF10A non-tumorigenic epithelial breast tissue cells. MVs were isolated using diff erential ultracentrifugation. Samples were lysed, reduced, alkylated, digested, and analyzed by an Orbitrap Fusion mass spectrometer. MS raw fi les were analyzed using MaxQuant version 1.6.12.0. Peptides were searched against the human UniProt FASTA database using the Andromeda search engine, integrated into MaxQuant. Results. MVs derived from MCF10A and MDA-MB-231 cell lines were analyzed, and 1427 and 547 proteins were identifi ed in the MDA-MB-231 and MCF10A-derived MVs, respectively. In total, 455 proteins were common to both MDA-MB-231 and MCF10A MVs. MVs derived from MCF10A and MDAMB-231 cell lines were analyzed, and 1427 and 547 proteins were identifi ed in the MDA-MB-231 and MCF10A-derived MVs, respectively. In total, 455 proteins were common to both MDA-MB-231 and MCF10A MVs. Th e unique MDA-MB-231 MV proteins were searched against the DisGeNET human diseases database. Out of 972 MDA-MB-231 MV proteins, 112 were cancer-related while 32 were specifi cally associated with BC. In the MDA-MB-231 MV proteome, 23 Wnt signaling pathway proteins were identifi ed based on their GO biological process. Proteomic analysis identifi ed enzymes OAT, TALDO1, and BLMH were only in MVs from metastatic MDA-MB-231 cell line. The specific activity of OAT and TALDO1 was higher in MV fractions of MDA-MB-231 in comparison to the non-cancerous MCF10A cell line-derived MVs. Th ese fi ndings might suggest that these enzymes might play a role in BC. In our present study, we found that some enzymes identifi ed from MV fractions were already proposed to play a role in cancer therapy as therapeutic targets (OAT, TALDO1) and resistance against chemotherapy agents (BLMH).


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 5052-5052
Author(s):  
Hanan Mohammad ◽  
Daniel j Lindner ◽  
Michael Kalafatis

Abstract Abstract 5052 Protein Kinase II (CK2) is a pleiotropic, and ubiquitous serine/threonine kinase taht utilizes both ATP and GTP as phosphate donors. Protein kinase CK2 mostly exists as a tetramer composed of two catalytic subunits α and α‘, which exists in heterogeneous or homogenous nature, and two regulatory β subunits. CK2 is a key regulator of signaling pathways involved in cell cycle, proliferation and apoptosis. It is consistently overexpressed in cancer tissue and capable of shuttling between cellular compartments but mainly localized in the nuclear matrix of cancer cells. CK2 is highly involved in apoptosis suppression, oncogene activation and tumorigenesis. It is also considered a bad prognostic marker in cancer tissue and is suggested to be a promising target for cancer therapy. In this study, we examined the effect, of a specific protein kinase inhibitor, and ATP competitor, 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), on the growth of various cancer types. We have reported DMAT as a potent cancer therapy. In vitro analysis of the viability of hematologic neoplasms and solid tumors, including human lymphoma U937, hormone dependent breast cancer MCF7, hormone independent breast cancer MDA-MB231 and MDA-MB468, and human cervical cancer HeLa cell lines, revealed marked reduction of cellular viability upon treatment with different DMAT concentration at varying time periods. Lymphoma cell line U937 showed an IC50 between 6 -12 μM. A sharp decrease in cancer cells growth was specifically observed following DMAT treatment of cervical carcinoma HeLa cell line with IC50 between 0.2-0.3 μM. Each of the breast cancer cell lines showed IC50 of 6, 10, and 20 μM DMAT for MDA-MB468, MCF7 and MDA-MB231 respectively. The more cancer cell lines we screen, the more evidence we have to suggest DMAT as a potential anti-cancer therapy. However, the specific mechanism of action of DMAT-inhibited-CK2 pathway in cancer ablation is not clear yet. Using Propidium-Iodide staining in conjunction with flow cytometry techniques, we analyzed and compared cell cycles of treated U937, MCF-7, MDA-MB231, MDA-MB468, and HeLa cell lines. Our data indicate that DMAT induces cell cycle arrest in HeLa cell line at G0/G1 phase. No effect on cell cycle was observed for all other cell lines tested. However, all cell lines underwent apoptosis following treatment with DMAT. Thus far our results suggest that DMAT can induce cell cycle arrest, apoptosis and maybe necrosis or multiple processes at the same time. We suggest that the mechanism of DMAT in cancer inhibition could be of multiple actions which further validate this molecule as a potent cancer therapy that could be suitable for clinical investigation. Disclosures No relevant conflicts of interest to declare.


Metabolites ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 67 ◽  
Author(s):  
Nao Nishida-Aoki ◽  
Yoshihiro Izumi ◽  
Hiroaki Takeda ◽  
Masatomo Takahashi ◽  
Takahiro Ochiya ◽  
...  

Extracellular vesicles (EVs) are lipid bilayer nanovesicles secreted from almost all cells including cancer. Cancer-derived EVs contribute to cancer progression and malignancy via educating the surrounding normal cells. In breast cancer, epidemiological and experimental observations indicated that lipids are associated with cancer malignancy. However, lipid compositions of breast cancer EVs and their contributions to cancer progression are unexplored. In this study, we performed a widely targeted quantitative lipidomic analysis in cells and EVs derived from high- and low-metastatic triple-negative breast cancer cell lines, using supercritical fluid chromatography fast-scanning triple-quadrupole mass spectrometry. We demonstrated the differential lipid compositions between EVs and cells of their origin, and between high- and low-metastatic cell lines. Further, we demonstrated EVs from highly metastatic breast cancer accumulated unsaturated diacylglycerols (DGs) compared with EVs from lower-metastatic cells, without increasing the amount in cells. The EVs enriched with DGs could activate the protein kinase D signaling pathway in endothelial cells, which can lead to stimulated angiogenesis. Our results indicate that lipids are selectively loaded into breast cancer EVs to support tumor progression.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4021
Author(s):  
Sarai Martinez-Pacheco ◽  
Lorraine O’Driscoll

To study and exploit extracellular vesicles (EVs) for clinical benefit as biomarkers, therapeutics, or drug delivery vehicles in diseases such as cancer, typically we need to separate them from the biofluid into which they have been released by their cells of origin. For cultured cells, this fluid is conditioned medium (CM). Previous studies comparing EV separation approaches have typically focused on CM from one cell line or pooled samples of other biofluids. We hypothesize that this is inadequate and that extrapolating from a single source of EVs may not be informative. Thus, in our study of methods not previous compared (i.e., the original differential ultracentrifugation (dUC) method and a PEG followed by ultracentrifugation (PEG + UC) method), we analyzed CM from three different HER2-positive breast cancer cell lines (SKBR3, EFM192A, HCC1954) that grow in the same culture medium type. CM from each was collected and equally divided between both protocols. The resulting isolates were compared on seven characteristics/parameters including particle size, concentration, structure/morphology, protein content, purity, detection of five EV markers, and presence of HER2. Both dUC and PEG + UC generated reproducible data for any given breast cancer cell lines’ CM. However, the seven characteristics of the EV isolates were cell line- and method-dependent. This suggests the need to include more than one EV source, rather than a single or pooled sample, when selecting an EV separation method to be advanced for either research or clinical purposes.


2018 ◽  
Author(s):  
Ke Liu ◽  
Patrick A. Newbury ◽  
Benjamin S. Glicksberg ◽  
William ZD Zeng ◽  
Eran R. Andrechek ◽  
...  

AbstractMetastasis is the most common cause of cancer-related death and, as such, there is an urgent need to discover new therapies to treat metastasized cancers. Cancer cell lines are widely-used models to study cancer biology and test drug candidates. However, it is still unknown to what extent they adequately resemble the disease in patients. The recent accumulation of large-scale genomic data in cell lines, mouse models, and patient tissue samples provides an unprecedented opportunity to evaluate the suitability of cell lines for metastatic cancer research. In this work, we used breast cancer as a case study. The comprehensive comparison of the genetic profiles of 57 breast cancer cell lines with those of metastatic breast cancer samples revealed substantial genetic differences. In addition, we identified cell lines that more closely resemble different subtypes of metastatic breast cancer. Surprisingly, a combined analysis of mutation, copy number variation and gene expression data suggested that MDA-MB-231, the most commonly used triple negative cell line for metastatic breast cancer research, had little genomic similarity with Basal-like metastatic breast cancer samples. We further compared cell lines with organoids, a new type of preclinical model which are becoming more popular in recent years. We found that organoids outperformed cell lines in resembling the transcriptome of metastatic breast cancer samples. However, additional differential expression analysis suggested that both types of models could not mimic the effects of tumor microenvironment and meanwhile had their own bias towards modeling specific biological processes. Our work provides a guide of cell line selection in metastasis-related study and sheds light on the potential of organoids in translational research.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4397
Author(s):  
Mohsen Fathi ◽  
Robiya Joseph ◽  
Jay R. T. Adolacion ◽  
Melisa Martinez-Paniagua ◽  
Xingyue An ◽  
...  

Extracellular vesicles (EVs) mediate communication in health and disease. Conventional assays are limited in profiling EVs secreted from large populations of cells and cannot map EV secretion onto individual cells and their functional profiles. We developed a high-throughput single-cell technique that enabled the mapping of dynamics of EV secretion. By utilizing breast cancer cell lines, we established that EV secretion is heterogeneous at the single-cell level and that non-metastatic cancer cells can secrete specific subsets of EVs. Single-cell RNA sequencing confirmed that pathways related to EV secretion were enriched in the non-metastatic cells compared with metastatic cells. We established isogenic clonal cell lines from non-metastatic cells with differing propensities for CD81+CD63+EV secretion and showed for the first time that specificity in EV secretion is an inheritable property preserved during cell division. Combined in vitro and animal studies with these cell lines suggested that CD81+CD63+EV secretion can impede tumor formation. In human non-metastatic breast tumors, tumors enriched in signatures of CD81+CD63+EV have a better prognosis, higher immune cytolytic activity, and enrichment of pro-inflammatory macrophages compared with tumors with low CD81+CD63+EVs signatures. Our single-cell methodology enables the direct integration of EV secretion with multiple cellular functions and enables new insights into cell/disease biology.


2017 ◽  
Vol 63 (1) ◽  
pp. 141-145
Author(s):  
Yuliya Khochenkova ◽  
Eliso Solomko ◽  
Oksana Ryabaya ◽  
Yevgeniya Stepanova ◽  
Dmitriy Khochenkov

The discovery for effective combinations of anticancer drugs for treatment for breast cancer is the actual problem in the experimental chemotherapy. In this paper we conducted a study of antitumor effect of the combination of sunitinib and bortezomib against MDA-MB-231 and SKBR-3 breast cancer cell lines in vitro. We found that bortezomib in non-toxic concentrations can potentiate the antitumor activity of sunitinib. MDA-MB-231 cell line has showed great sensitivity to the combination of bortezomib and sunitinib in vitro. Bortezomib and sunitinib caused reduced expression of receptor tyrosine kinases VEGFR1, VEGFR2, PDGFRa, PDGFRß and c-Kit on HER2- and HER2+ breast cancer cell lines


2018 ◽  
Vol 18 (4) ◽  
pp. 573-582 ◽  
Author(s):  
Khaled R.A. Abdellatif ◽  
Mostafa M. Elbadawi ◽  
Mohammed T. Elsaady ◽  
Amer A. Abd El-Hafeez ◽  
Takashi Fujimura ◽  
...  

Background: Some 2-thioxoimidazolidinones have been reported as anti-prostate and anti-breast cancer agents through their inhibitory activity on topoisomerase I that is considered as a potential chemotherapeutic target. Objective: A new series of 3,5-disubstituted-2-thioxoimidazolidinone derivatives 10a-f and their S-methyl analogs 11a-f were designed, synthesized and evaluated for cytotoxicity against human prostate cancer cell line (PC-3), human breast cancer cell line (MCF-7) and non-cancerous human lung fibroblast cell line (WI-38). </P><P> Results and Method: While compounds 10a-f showed a broad range of activities against PC-3 and MCF-7 cell lines (IC50 = 34.0 – 186.9 and 24.6 – 147.5 µM respectively), the S-methyl analogs 11a-f showed (IC50 = 22.7 – 198.5 and 16.9 – 188.2 µM respectively) in comparison with 5-fluorouracil (IC50 = 60.7 and 40.7 µM respectively). 11c (IC50 = 22.7 and 29.2 µM) and 11f (IC50 = 28.7 and 16.9 µM) were the most potent among all compounds against both PC-3 and MCF-7 respectively with no cytotoxicity against WI-38. Conclusion: The newly synthesized compounds showed good activity against PC-3 and MCF-7 cell lines in comparison with 5-fluorouracil. Compounds 11c and 11f bound with human topoisomerase I similar to its known inhibitors and significantly inhibited its DNA relaxation activity in a dose dependent manner which may rationalize their molecular mechanism as cytotoxic agents.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 502
Author(s):  
Filipe Almeida ◽  
Andreia Gameiro ◽  
Jorge Correia ◽  
Fernando Ferreira

Feline mammary carcinoma (FMC) is the third most common type of neoplasia in cats, sharing similar epidemiological features with human breast cancer. In humans, histone deacetylases (HDACs) play an important role in the regulation of gene expression, with HDAC inhibitors (HDACis) disrupting gene expression and leading to cell death. In parallel, microtubules inhibitors (MTIs) interfere with the polymerization of microtubules, leading to cell cycle arrest and apoptosis. Although HDACis and MTIs are used in human cancer patients, in cats, data is scarce. In this study, we evaluated the antitumor properties of six HDACis (CI-994, panobinostat, SAHA, SBHA, scriptaid, and trichostatin A) and four MTIs (colchicine, nocodazole, paclitaxel, and vinblastine) using three FMC cell lines (CAT-MT, FMCp, and FMCm), and compared with the human breast cancer cell line (SK-BR-3). HDACis and MTIs exhibited dose-dependent antitumor effects in FMC cell lines, and for all inhibitors, the IC50 values were determined, with one feline cell line showing reduced susceptibility (FMCm). Immunoblot analysis confirmed an increase in the acetylation status of core histone protein HDAC3 and flow cytometry showed that HDACis and MTIs lead to cellular apoptosis. Overall, our study uncovers HDACis and MTIs as promising anti-cancer agents to treat FMCs.


Sign in / Sign up

Export Citation Format

Share Document