scholarly journals Effect of irinotecan on HMGB1, MMP9 expression, cell cycle, and cell growth in breast cancer (MCF-7) cells

Tumor Biology ◽  
2017 ◽  
Vol 39 (4) ◽  
pp. 101042831769835 ◽  
Author(s):  
Saeedeh Keyvani-Ghamsari ◽  
Azra Rabbani-Chadegani ◽  
Javad Sargolzaei ◽  
Maryam Shahhoseini
2017 ◽  
Vol 281 ◽  
pp. 139-151 ◽  
Author(s):  
Ka Yiu Yip ◽  
Murphy Lam Yim Wan ◽  
Alice Sze Tsai Wong ◽  
Kenneth S. Korach ◽  
Hani El-Nezami

2015 ◽  
Vol 27 (1) ◽  
pp. 197
Author(s):  
S.-H. Kim ◽  
K.-C. Choi

Triclosan (Tri) is one of many endocrine-disrupting chemicals (EDCs) that are scattered with environment agents, such as toothpastes, deodorants, and cleaning supplies. As a phytoestrogen, kaempferol (Kae) is one of bioflavonoids, which has been found in a variety of vegetables including broccoli, tea, and tomatoes. Although Kae may have anti-cancer activity, its exact mechanism is under investigation, and might be the induction of apoptosis and inhibition of cell proliferation or angiogenesis. In this study, we examined the anti-proliferative effects of Kae in Tri-induced cell growth in MCF-7 breast cancer cells. A proper concentration and co-treatment effect of Tri and Kae were determined by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay to measure cell viability in vitro. MCF-7 cells were cultured with a negative control (0.1% DMSO), E2 (1 × 10–9 M), Tri (10–5–10–8 M) and Kae (50, 70, and 90 mM). In this study, treatment with Tri (10–6 M) increased the cell viability of MCF-7 cells, while Kae (50 mM) significantly reduced the cell viability compared to the negative control (P < 0.05). In addition, Kae significantly reversed Tri-induced MCF-7 cell growth at 50 mM compared with a higher concentration (100 mM; P < 0.05). To confirm that Kae inhibited Tri-induced cell growth, we examined the transcriptional levels of cell growth and apoptosis-related markers, i.e. cyclin D, p21, cyclin E, p27 and bcl-2, and bax genes, using reverse transcription (RT)-PCR. The expression levels of cyclin D, cyclin E, and bax/bcl-2 ratio were increased, while those of p21 and p27 mRNAs were decreased by Tri in MCF-7 cells. In addition, Kae treatment significantly reversed Tri-induced gene expressions in an opposite manner. In parallel with its mRNA level, the protein level of cyclin E, p-ERK and p-MEK1/2 were induced by Tri while it was reversed by Kae as shown by Western blot analysis. The expression levels of p21 and bax genes were altered by Tri and reversed by Kae treatment in this study. As an in vivo model, a xenografted mouse model was generated following injection with MCF-7 breast cancer cells in 6 weeks. In parallel with in vitro results, tumour volumes following treatment with E2 and Tri were continually increased compared to a vehicle (corn oil). It was of interest that treatment of the mice with combination of E2 plus Kae or Tri plus Kae showed less tumour formation rather than that of singly treated mice with E2 or Tri. Taken together, these results indicate that Kae may inhibit the growth of MCF-7 cells via regulating of cell cycle and apoptosis-related genes. In addition, EDC-induced progression of breast cancer may be suppressed by a phytoestrogen, i.e. Kae, in a specific manner.


2021 ◽  
Vol 22 (11) ◽  
pp. 5642
Author(s):  
Magdalena Markowicz-Piasecka ◽  
Karol Sadowski ◽  
Johanna Huttunen ◽  
Joanna Sikora ◽  
Kristiina M. Huttunen

Metformin, apart from its glucose-lowering properties, has also been found to demonstrate anti-cancer properties. Anti-cancer efficacy of metformin depends on its uptake in cancer cells, which is mediated by plasma membrane monoamine transporters (PMAT) and organic cation transporters (OCTs). This study presents an analysis of transporter mediated cellular uptake of ten sulfonamide-based derivatives of metformin in two breast cancer cell lines (MCF-7 and MDA-MB-231). Effects of these compounds on cancer cell growth inhibition were also determined. All examined sulfonamide-based analogues of metformin were characterized by greater cellular uptake in both MCF-7 and MDA-MB-231 cells, and stronger cytotoxic properties than those of metformin. Effective intracellular transport of the examined compounds in MCF-7 cells was accompanied by high cytotoxic activity. For instance, compound 2 with meta-methyl group in the benzene ring inhibited MCF-7 growth at micromolar range (IC50 = 87.7 ± 1.18 µmol/L). Further studies showed that cytotoxicity of sulfonamide-based derivatives of metformin partially results from their ability to induce apoptosis in MCF-7 and MDA-MB-231 cells and arrest cell cycle in the G0/G1 phase. In addition, these compounds were found to inhibit cellular migration in wound healing assay. Importantly, the tested biguanides are more effective in MCF-7 cells at relatively lower concentrations than in MDA-MB-231 cells, which proves that the effectiveness of transporter-mediated accumulation in MCF-7 cells is related to biological effects, including MCF-7 cell growth inhibition, apoptosis induction and cell cycle arrest. In summary, this study supports the hypothesis that effective transporter-mediated cellular uptake of a chemical molecule determines its cytotoxic properties. These results warrant a further investigation of biguanides as putative anti-cancer agents.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 412
Author(s):  
Mohammad M. Al-Sanea ◽  
Ahmad J. Obaidullah ◽  
Mohamed E. Shaker ◽  
Garri Chilingaryan ◽  
Mohammed M. Alanazi ◽  
...  

Background: Cyclin-dependent kinases (CDKs) regulate mammalian cell cycle progression and RNA transcription. Based on the structural analysis of previously reported CDK2 inhibitors, a new compound with 3-hydrazonoindolin-2-one scaffold (HI 5) was well designed, synthesized, and biologically evaluated as a promising anti-breast cancer hit compound. Methods: The potential anti-cancerous effect of HI 5 was evaluated using cytotoxicity assay, flow cytometric analysis of apoptosis and cell cycle distribution, ELISA immunoassay, in vitro CDK2/cyclin A2 activity, and molecular operating environment (MOE) virtual docking studies. Results: The results revealed that HI 5 exhibits pronounced CDK2 inhibitory activity and cytotoxicity in human breast cancer MCF-7 cell line. The cytotoxicity of HI 5 was found to be intrinsically mediated apoptosis, which in turn, is associated with low Bcl-2 expression and high activation of caspase 3 and p53. Besides, HI 5 blocked the proliferation of the MCF-7 cell line and arrested the cell cycle at the G2/M phase. The docking studies did not confirm which one of geometric isomers (syn and anti) is responsible for binding affinity and intrinsic activity of HI 5. However, the molecular dynamic studies have confirmed that the syn-isomer has more favorable binding interaction and thus is responsible for CDK2 inhibitory activity. Discussion: These findings displayed a substantial basis of synthesizing further derivatives based on the 3-hydrazonoindolin-2-one scaffold for favorable targeting of breast cancer.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3043
Author(s):  
Ahmed Elwakeel ◽  
Anissa Nofita Sari ◽  
Jaspreet Kaur Dhanjal ◽  
Hazna Noor Meidinna ◽  
Durai Sundar ◽  
...  

We previously performed a drug screening to identify a potential inhibitor of mortalin–p53 interaction. In four rounds of screenings based on the shift in mortalin immunostaining pattern from perinuclear to pan-cytoplasmic and nuclear enrichment of p53, we had identified MortaparibPlus (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole) as a novel synthetic small molecule. In order to validate its activity and mechanism of action, we recruited Luminal-A breast cancer cells, MCF-7 (p53wild type) and T47D (p53L194F) and performed extensive biochemical and immunocytochemical analyses. Molecular analyses revealed that MortaparibPlus is capable of abrogating mortalin–p53 interaction in both MCF-7 and T47D cells. Intriguingly, upregulation of transcriptional activation function of p53 (as marked by upregulation of the p53 effector gene—p21WAF1—responsible for cell cycle arrest and apoptosis) was recorded only in MortaparibPlus-treated MCF-7 cells. On the other hand, MortaparibPlus-treated T47D cells exhibited hyperactivation of PARP1 (accumulation of PAR polymer and decrease in ATP levels) as a possible non-p53 tumor suppression program. However, these cells did not show full signs of either apoptosis or PAR-Thanatos. Molecular analyses attributed such a response to the inability of MortaparibPlus to disrupt the AIF–mortalin complexes; hence, AIF did not translocate to the nucleus to induce chromatinolysis and DNA degradation. These data suggested that the cancer cells possessing enriched levels of such complexes may not respond to MortaparibPlus. Taken together, we report the multimodal anticancer potential of MortaparibPlus that warrants further attention in laboratory and clinical studies.


Cells ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Umamaheswari Natarajan ◽  
Thiagarajan Venkatesan ◽  
Vijayaraghavan Radhakrishnan ◽  
Shila Samuel ◽  
Appu Rathinavelu

Gene expression is often altered by epigenetic modifications that can significantly influence the growth ability and progression of cancers. SAHA (Suberoylanilide hydroxamic acid, also known as Vorinostat), a well-known Histone deacetylase (HDAC) inhibitor, can stop cancer growth and metastatic processes through epigenetic alterations. On the other hand, Letrozole is an aromatase inhibitor that can elicit strong anti-cancer effects on breast cancer through direct and indirect mechanisms. A newly developed inhibitor, RG7388 specific for an oncogene-derived protein called MDM2, is in clinical trials for the treatment of various cancers. In this paper, we performed assays to measure the effects of cell cycle arrest resulting from individual drug treatments or combination treatments with SAHA + letrozole and SAHA + RG7388, using the MCF-7 breast cancer cells. When SAHA was used individually, or in combination treatments with RG7388, a significant increase in the cytotoxic effect was obtained. Induction of cell cycle arrest by SAHA in cancer cells was evidenced by elevated p21 protein levels. In addition, SAHA treatment in MCF-7 cells showed significant up-regulation in phospho-RIP3 and MLKL levels. Our results confirmed that cell death caused by SAHA treatment was primarily through the induction of necroptosis. On the other hand, the RG7388 treatment was able to induce apoptosis by elevating BAX levels. It appears that, during combination treatments, with SAHA and RG7388, two parallel pathways might be induced simultaneously, that could lead to increased cancer cell death. SAHA appears to induce cell necroptosis in a p21-dependent manner, and RG7388 seems to induce apoptosis in a p21-independent manner, outlining differential mechanisms of cell death induction. However, further studies are needed to fully understand the intracellular mechanisms that are triggered by these two anti-cancer agents.


Sign in / Sign up

Export Citation Format

Share Document