Design enhancement and non-dimensional analysis of magnetically-levitated nonlinear vibration energy harvesters

2017 ◽  
Vol 28 (19) ◽  
pp. 2810-2822 ◽  
Author(s):  
Abdullah Nammari ◽  
Hamzeh Bardaweel

Over the past decade, there has been special interest in developing nonlinear energy harvesters capable of operating over a wideband frequency spectrum. Chief among the nonlinear energy harvesting techniques is magnetic levitation–based energy harvesting. Nonetheless, current nonlinear magnetic levitation–based energy harvesting approaches encapsulate design challenges. This work investigates some of the design issues and limitations faced by traditional magnetic levitation–based energy harvesters such as damping schemes and stiffness nonlinearities. Both experiment and model are used to quantify and evaluate damping regimes and stiffness nonlinearities present in magnetic levitation–based energy harvesters. Results show that dry friction, mostly ignored in magnetic levitation–based energy harvesting literature, contributes to the overall energy dissipation. Measured and modeled magnetic forces–displacement curves suggest that stiffness nonlinearities are weak over moderate distances. An enhanced design utilizing a combination of mechanical and magnetic springs is introduced to overcome some of these limitations. A non-dimensional model of the proposed design is developed and used to investigate the enhanced architecture. The unique potential energy profile suggests that the proposed nonlinear energy harvester outperforms the linear version by steepening the displacement response and shifting the resonance frequency, resulting in a larger bandwidth for which power can be harvested.

Author(s):  
Swapnil Arawade ◽  
Ganesh Korwar

In this literature different biomechanical energy harvesters are reviewed. In the past years a lot of work reported on energy harvesting. Energy crisis is the main issue in front of human so it is essential to find new promising ways to fulfil the need of electricity. Wearable smart devices and small sensor require low electrical power so to power them biomechanical energy harvesters comes into picture. The innovative work done by the researchers in developing new biomechanical energy harvester is discussed and summarized.


2017 ◽  
Vol 29 (6) ◽  
pp. 1196-1205 ◽  
Author(s):  
Brian P Bernard ◽  
Brian P Mann

Dynamic magnifiers and coupled harvester arrays are two strategies that have been developed over the past decade to improve the peak power and bandwidth of energy harvesters. However, both of these methods come with drawbacks. Dynamic magnifiers require retuning since they change the frequency of the peak response and some designs result in decreased power per unit mass. Coupled harvester arrays can increase the overall bandwidth, but also include central valleys between the peaks and a significant increase in the cost. This article describes an excited dynamic magnifier which borrows design characteristics from both traditional dynamic magnifiers and harvester arrays in order to overcome these drawbacks. A hardening-type nonlinear tuned energy harvester with excited dynamic magnifier can achieve higher peak power, greater power per unit mass, and wider bandwidth without the need for retuning and for a minimal added cost as compared to the uncoupled harvester. Most importantly, the addition of a dynamic energy harvester also significantly improves performance in the frequency range of coexisting solutions by expanding the basin of attraction for the larger amplitude solution.


2013 ◽  
Vol 860-863 ◽  
pp. 594-598
Author(s):  
Zu Yao Wang

Vibration-based energy harvester has been widely investigated during the past years. In .order to improve the power-generating ability and enlarge the frequency range of energy harvesters, this paper presents the design and analysis of a new magneto electric energy harvester that uses Terfenol-D/PZT/Terfenol-D laminate to harvest energy from nonlinear vibrations created by magnetic levitation. The mathematical model of the proposed harvester is derived and used in a parametric study. By multi-scale analysis, the frequency-response analysis of the system is obtained and discussed here. It is shown that the systems nonlinearity can broaden the harvesters working bandwidth, thus makes the harvester suitable to work in practical cases.


Author(s):  
Jiahua Wang ◽  
Bao Zhao ◽  
Junrui Liang ◽  
Wei-Hsin Liao

Abstract Nonlinear energy harvesters have been widely studied in the last decade. Their broad bandwidth and relatively high power output contribute to energy harvesting applications. However, the coexisting multiple orbits brought by the nonlinearity weaken the performance of nonlinear energy harvesters. This paper proposes to achieve orbit jumps of monostable energy harvesters by a bidirectional energy conversion circuit. Changing the switch control sequence in the bidirectional energy conversion circuit facilitates it with both the energy harvesting and vibration exciting functions. Thus, a nonlinear energy harvester in connection with the circuit can harness ambient energy as well as excite itself, through energy harvesting and vibration exciting modes separately. Based on the concept of vibration exciting, the energy saved in the storage is used to stimulate the piezoelectric transducer for a larger vibration amplitude, which enables orbit jumps. The working mechanism of the circuit is introduced. Experimental setup of a monostable energy harvester has been developed to validate the proposed method. The monostable system can be stimulated to high-energy orbit from a small vibration amplitude by the vibration exciting mode of the circuit. It is also revealed that the method can achieve orbit jumps in a wide frequency range within the hysteresis area. Evaluations on energy consumption and energy gain show that the sacrificed energy can be quickly recovered. A novel approach for orbit jumps of monostable energy harvesters is performed so as to open new opportunities for monostable energy harvesters.


Author(s):  
Shun Chen ◽  
David Eager ◽  
Liya Zhao

This paper proposes a softening nonlinear aeroelastic galloping energy harvester for enhanced energy harvesting from concurrent wind flow and base vibration. Traditional linear aeroelastic energy harvesters have poor performance with quasi-periodic oscillations when the base vibration frequency deviates from the aeroelastic frequency. The softening nonlinearity in the proposed harvester alters the self-excited galloping frequency and simultaneously extends the large-amplitude base-excited oscillation to a wider frequency range, achieving frequency synchronization over a remarkably broadened bandwidth with periodic oscillations for efficient energy conversion from dual sources. A fully coupled aero-electro-mechanical model is built and validated with measurements on a devised prototype. At a wind speed of 5.5 m/s and base acceleration of 0.1 g, the proposed harvester improves the performance by widening the effective bandwidth by 300% compared to the linear counterpart without sacrificing the voltage level. The influences of nonlinearity configuration, excitation magnitude, and electromechanical coupling strength on the mechanical and electrical behavior are examined. The results of this paper form a baseline for future efficiency enhancement of energy harvesting from concurrent wind and base vibration utilizing monostable stiffness nonlinearities.


Author(s):  
Sumin Seong ◽  
Christopher Mullen ◽  
Soobum Lee

This paper presents reliability-based design optimization (RBDO) and experimental validation of the purely mechanical nonlinear vibration energy harvester we recently proposed. A bi-stable characteristic was embodied with a pre-stressed curved cantilever substrate on which piezoelectric patches were laminated. The curved cantilever can be simply manufactured by clamping multiple beams with different lengths or by connecting two ends of the cantilever using a coil spring. When vibrating, the inertia of the tip mass activates the curved cantilever to cause snap-through buckling and makes the nature of vibration switch between two equilibrium positions. The reliability-based design optimization study for maximization of power density and broadband energy harvesting performance is performed. The benefit of the proposed design in terms of excellent reliability, design compactness, and ease of implementation is discussed. The prototype is fabricated based on the optimal design result and energy harvesting performance between the linear and nonlinear energy harvesters is compared. The excellent broadband characteristic of the purely mechanical harvester will be validated.


2014 ◽  
Vol 953-954 ◽  
pp. 655-658 ◽  
Author(s):  
Guang Qing Shang ◽  
Hong Bing Wang ◽  
Chun Hua Sun

Energy harvesting system has become one of important areas of ​​research and develops rapidly. How to improve the performance of the piezoelectric vibration energy harvester is a key issue in engineering applications. There are many literature on piezoelectric energy harvesting. The paper places focus on summarizing these literature of mathematical modeling of piezoelectric energy harvesting, ranging from the linear to nonlinear, from early a single mechanical degree to piezoaeroelastic problems.


Author(s):  
Lin Dong ◽  
Frank T. Fisher

Vibration-based energy harvesting has been widely investigated to as a means to generate low levels of electrical energy for applications such as wireless sensor networks. However, due to the fact that vibration from the environment is typically random and varies with different magnitudes and frequencies, it is a challenge to implement frequency matching in order to maximize the power output of the energy harvester with a wider frequency bandwidth for applications where there is a time-dependent, varying source frequency. Possible solutions of frequency matching include widening the bandwidth of the energy harvesters themselves in order to implement frequency matching and to perform resonance-based tuning approach, the latter of which shows the most promise to implement a frequency matching design. Here three tuning strategies are discussed. First a two-dimensional resonant frequency tuning technique for the cantilever-geometry energy harvesting device which extended previous 1D tuning approaches was developed. This 2D approach could be used in applications where space constraints impact the available design space of the energy harvester. In addition, two novel resonant frequency tuning approaches (tuning via mechanical stretch and tuning via applied bias voltage, respectively) for electroactive polymer (EAP) membrane-based geometry energy harvesters was proposed, such that the resulting changes in membrane tension were used to tune the device for applications targeting variable ambient frequency environments.


2020 ◽  
Vol 87 (9) ◽  
Author(s):  
Zhaoqi Li ◽  
Qian Deng ◽  
Shengping Shen

Abstract In this work, we propose a circular membrane-based flexoelectric energy harvester. Different from previously reported nanobeams based flexoelectric energy harvesters, for the flexoelectric membrane, the polarization direction around its center is opposite in sign to that far away from the center. To avoid the cancelation of the electric output, electrodes coated to upper and lower surfaces of the flexoelectric membrane are respectively divided into two parts according to the sign of bending curvatures. Based on Hamilton’s principle and Ohm’s law, we obtain governing equations for the circular membrane-based flexoelectric energy harvester. A generalized assumed-modes method is employed for solving the system, so that the performance of the flexoelectric energy harvester can be studied in detail. We analyze the effects of the thickness h, radius r0, and their ratio on the energy harvesting performance. Specifically, we show that, by selecting appropriate h and r0, it is possible to design an energy harvester with both high energy conversion efficiency and low working frequency. At last, through numerical simulations, we further study the optimization ratio for which the electrodes should be divided.


Sign in / Sign up

Export Citation Format

Share Document