scholarly journals Health Beneficial Effects of Moomiaii in Traditional Medicine

2020 ◽  
Vol 9 ◽  
pp. 1743
Author(s):  
Solmaz Rahmani Barouji ◽  
Amir Saber ◽  
Mohammadali Torbati ◽  
Seyyed Mohammad Bagher Fazljou ◽  
Ahmad Yari Khosroushahi

raditional medicine (TM) that developed over the years within various societies consists of medical experimental knowledge and practices, which apply natural methods and compounds for general wellness and healing. Moomiaii as a pale-brown to blackish-brown natural exudate is one of the natural compounds in traditional medicine that has been used over 3000 years in many countries of the world especially in India, China, Russia, Iran, Mongolia, Kazakhstan and Kirgizstan. We reviewed all English-language studies about Moomiaii that we accessed them. In traditional medicine, many beneficial activities have been attributed to Moomiaii and to its main constituents, Humic acid and Fulvic acid, which are widely used to prevent and treatment of different diseases. Some modern scientific investigations showed that Moomiaii as a safe dietary supplement can be beneficial in various health complications. Even though the beneficial effects of Moomiaii have been confirmed in traditional and modern medicine, it seems that additional in-vitro/in-vivo studies and comprehensive clinical trials are necessary to explain the whole mechanisms of action and to determine the effective doses in various diseases. We discuss and clarify the claimed health beneficial effects of Moomiaii in some wide-spread diseases regarding its anti-ulcerogenic, immunomodulatory, antidiabetic, antioxidative and anticancer properties. [GMJ.2020;9:e1743]

2021 ◽  
Author(s):  
Lucienne Gatt ◽  
Pierre Schembri Wismayer

Leukaemia is the most common cancer in children under 15 years of age as well as the most common blood cancer in people older than 55. The use of all trans retinoic acid (ATRA) in combination with arsenic trioxide (ATO) for acute promyelocytic leukaemia (APL) and tyrosine kinase inhibitors for chronic myeloid leukaemia (CML) respectively, have improved survival rates. However, new, natural therapies are constantly being sought after to overcome issues with resistance, side effects and specificity. As a result of their range of health benefits, including anticancer properties, phenolic compounds have been extensively studied over the past two decades. One on hand, in vitro and in vivo studies highlight both the inhibitory as well as differentiation inducing effects of phenolics on different leukaemia types. On the other hand, clinical trials to date have shown their beneficial effects (decrease in the absolute lymphocyte count and lymphadenopathy) in CLL (Chronic lymphoblastic leukaemia) patients. Promising therapeutic candidates for future use include epigallocatechin-3-gallate, coumarin, and gallic acid, with the latter ideally used in combination with the conventional drugs daunorubicin and cytarabine.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


2021 ◽  
Vol 14 (4) ◽  
pp. 336
Author(s):  
Annalisa Noce ◽  
Maria Albanese ◽  
Giulia Marrone ◽  
Manuela Di Lauro ◽  
Anna Pietroboni Zaitseva ◽  
...  

The Coronavirus Disease-19 (COVID-19) pandemic has caused more than 100,000,000 cases of coronavirus infection in the world in just a year, of which there were 2 million deaths. Its clinical picture is characterized by pulmonary involvement that culminates, in the most severe cases, in acute respiratory distress syndrome (ARDS). However, COVID-19 affects other organs and systems, including cardiovascular, urinary, gastrointestinal, and nervous systems. Currently, unique-drug therapy is not supported by international guidelines. In this context, it is important to resort to adjuvant therapies in combination with traditional pharmacological treatments. Among natural bioactive compounds, palmitoylethanolamide (PEA) seems to have potentially beneficial effects. In fact, the Food and Drug Administration (FDA) authorized an ongoing clinical trial with ultramicronized (um)-PEA as an add-on therapy in the treatment of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. In support of this hypothesis, in vitro and in vivo studies have highlighted the immunomodulatory, anti-inflammatory, neuroprotective and pain-relieving effects of PEA, especially in its um form. The purpose of this review is to highlight the potential use of um-PEA as an adjuvant treatment in SARS-CoV-2 infection.


2021 ◽  
Vol 11 (5) ◽  
pp. 336
Author(s):  
Mohammed Ghiboub ◽  
Ahmed M. I. Elfiky ◽  
Menno P. J. de Winther ◽  
Nicola R. Harker ◽  
David F. Tough ◽  
...  

Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.


2019 ◽  
Vol 20 (6) ◽  
pp. 1381 ◽  
Author(s):  
Adele Chimento ◽  
Francesca De Amicis ◽  
Rosa Sirianni ◽  
Maria Sinicropi ◽  
Francesco Puoci ◽  
...  

Resveratrol (3,5,4′-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its lipophilic nature. During the past decade, in order to improve RSV low aqueous solubility, absorption, membrane transport, and its poor bioavailability, various methodological approaches and different synthetic derivatives have been developed. In this review, we will describe the strategies used to improve pharmacokinetic characteristics and then beneficial effects of RSV. These methodological approaches include RSV nanoencapsulation in lipid nanocarriers or liposomes, nanoemulsions, micelles, insertion into polymeric particles, solid dispersions, and nanocrystals. Moreover, the biological results obtained on several synthetic derivatives containing different substituents, such as methoxylic, hydroxylic groups, or halogens on the RSV aromatic rings, will be described. Results reported in the literature are encouraging but require additional in vivo studies, to support clinical applications.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1709 ◽  
Author(s):  
Maria Teresa Viggiani ◽  
Lorenzo Polimeno ◽  
Alfredo Di Leo ◽  
Michele Barone

Phytoestrogens are natural substances that have been extensively studied for their beneficial effect on human health. Herein, we analyzed the data of the literature on the role of phytoestrogens in the prevention of colorectal neoproliferative lesions (CNL). Both in vitro and in vivo studies suggest that the beneficial effects of phytoestrogens on CNL mainly depend on their ability to bind estrogen receptor beta (ERβ) in the intestinal mucosa and counter ER-alpha (ERα) activity. Epidemiological data demonstrate a correlation between the low prevalence of CNL in Eastern populations and the consumption of soy products (phytoestrogen-enriched diet). However, both observational and interventional studies have produced inconclusive results. In our opinion, these discrepancies depend on an inadequate evaluation of phytoestrogen intake (dietary questionnaires were not aimed at establishing phytoestrogen intake) and absorption (depending mainly on the intestinal microbiota of the analyzed subjects). For this reason, in the present review, we performed an overview of phytoestrogen dietary intake and metabolism to offer the reader the opportunity for a better interpretation of the literature. Future prospective trials focusing on the protective effect of phytoestrogens against CNL should take into account both their dietary intake and absorption, considering the effective role of the intestinal microbiota.


2018 ◽  
Vol 18 (5) ◽  
pp. 667-674 ◽  
Author(s):  
Didem Sohretoglu ◽  
Shile Huang

The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms.


1996 ◽  
Vol 30 (10) ◽  
pp. 1130-1140 ◽  
Author(s):  
Susan M. Hart ◽  
Elaine M. Bailey

OBJECTIVE: To aid clinicians in developing an approach to the use of intravenous beta-lactam/beta-lactamase inhibitors on a patient-specific basis. To achieve this, the pharmacology, in vitro activity, and clinical use of the intravenous beta-lactam/beta-lactamase inhibitor combinations in the treatment of selected infections seen in hospitalized patients are discussed. DATA IDENTIFICATION: An English-language literature search using MEDLINE (1987–1995); Index Medicus (1987–1995); program and abstracts of the 32nd (1992), 33rd (1993), 34th (1994), and 35th (1995) Interscience Conference on Antimicrobial Agents and Chemotherapy; bibliographic reviews of review articles; and package inserts. STUDY SELECTION: In vitro and in vivo studies on the pharmacokinetics, microbiology, pharmacology, and clinical effectiveness of ampicillin/sulbactam, ticarcillin/clavulanate, and piperacillin/tazobactam were evaluated. DATA SYNTHESIS: Many properties of the beta-lactam/beta-lactamase inhibitor combinations are similar. Differences in dosing, susceptibilities, and clinical applications are important considerations for clinicians. Potential roles for these agents in the clinical setting include pneumonia, intraabdominal infections, and soft tissue infections. A short discussion on susceptibility data interpretation is also presented. CONCLUSIONS: There are important differences among the available beta-lactam/beta-lactamase inhibitor combinations, such as spectra of activity, which need to be considered in choosing an agent for a patient-specific case. These products can be useful alternatives to conventional two- to three-drug regimens in mixed infections such as foot infections in patients with diabetes and hospital-acquired intraabdominal infections.


2014 ◽  
Vol 70 (a1) ◽  
pp. C714-C714
Author(s):  
Calvin Steussy ◽  
Cynthia Stauffacher ◽  
Mark Lipton ◽  
Mohamed Seleem

The emergence of multi-drug resistant pathogenic bacteria is one of the great challenges to modern medicine. The gram positive cocci Methicillin Resistant Staphylococcus aureus (MRSA) and Vancomycin Resistant Enterococcus faecalis (VRE) are two particularly virulent examples. In vivo studies have shown that the eukaryotic like 'mevalonate' isoprenoid pathway used by these pathogenic cocci is essential to their growth and virulence [1]. Our structures of HMG-CoA reductase (HMGR) from P. mevalonii demonstrated that the bacterial enzymes are structurally distinct from the human enzymes allowing for specific antibacterial activity [2]. High throughput in vitro screening against bacterial HMGR at the Southern Research Center, Birmingham, AL uncovered a lead compound with an IC50 of 80 µM with a competitive mode of action. Our x-ray crystal structures of HMGR from E. faecalis complexed with the lead compound and its variations have informed the synthesis of new inhibitors that have improved the IC50 to 5 µM [3]. Studies of this compound show it to be active against both MRSA and VRE in culture, effective against these bacteria in biofilms, and efficacious in a model system of eukaryotic infection. Structures and kinetics of these compounds will be presented and future directions discussed.


Sign in / Sign up

Export Citation Format

Share Document