The Ubiquitin-Proteasome System and Memory: Moving Beyond Protein Degradation

2018 ◽  
Vol 24 (6) ◽  
pp. 639-651 ◽  
Author(s):  
Timothy J. Jarome ◽  
Rishi K. Devulapalli

Cellular models of memory formation have focused on the need for protein synthesis. Recently, evidence has emerged that protein degradation mediated by the ubiquitin-proteasome system (UPS) is also important for this process. This has led to revised cellular models of memory formation that focus on a balance between protein degradation and synthesis. However, protein degradation is only one function of the UPS. Studies using single-celled organisms have shown that non-proteolytic ubiquitin-proteasome signaling is involved in histone modifications and DNA methylation, suggesting that ubiquitin and the proteasome can regulate chromatin remodeling independent of protein degradation. Despite this evidence, the idea that the UPS is more than a protein degradation pathway has not been examined in the context of memory formation. In this article, we summarize recent findings implicating protein degradation in memory formation and discuss various ways in which both ubiquitin signaling and the proteasome could act independently to regulate epigenetic-mediated transcriptional processes necessary for learning-dependent synaptic plasticity. We conclude by proposing comprehensive models of how non-proteolytic functions of the UPS could work in concert to control epigenetic regulation of the cellular memory consolidation process, which will serve as a framework for future studies examining the role of the UPS in memory formation.

2020 ◽  
Vol 21 (6) ◽  
pp. 2008 ◽  
Author(s):  
Shuangqi Fan ◽  
Keke Wu ◽  
Mengpo Zhao ◽  
Erpeng Zhu ◽  
Shengming Ma ◽  
...  

Autophagy is a general protective mechanism for maintaining homeostasis in eukaryotic cells, regulating cellular metabolism, and promoting cell survival by degrading and recycling cellular components under stress conditions. The degradation pathway that is mediated by autophagy receptors is called selective autophagy, also named as xenophagy. Autophagy receptor NDP52 acts as a ‘bridge’ between autophagy and the ubiquitin-proteasome system, and it also plays an important role in the process of selective autophagy. Pathogenic microbial infections cause various diseases in both humans and animals, posing a great threat to public health. Increasing evidence has revealed that autophagy and autophagy receptors are involved in the life cycle of pathogenic microbial infections. The interaction between autophagy receptor and pathogenic microorganism not only affects the replication of these microorganisms in the host cell, but it also affects the host’s immune system. This review aims to discuss the effects of autophagy on pathogenic microbial infection and replication, and summarizes the mechanisms by which autophagy receptors interact with microorganisms. While considering the role of autophagy receptors in microbial infection, NDP52 might be a potential target for developing effective therapies to treat pathogenic microbial infections.


2020 ◽  
Vol 14 ◽  
Author(s):  
Imane Bjij ◽  
Ismail Hdoufane ◽  
Mahmoud Soliman ◽  
Menče Najdoska-Bogdanov ◽  
Driss Cherqaoui

: The ubiquitin proteasome system (UPS) is a crucial protein degradation pathway that involves several enzymes to maintain cellular protein homeostasis. This system has emerged as a major drug target against certain types of cancer as a disruption at the cellular level of UPS enzyme components forces the transformation of normal cell into cancerous cell. Although enormous advancements have been achieved in the understanding of tumorigenesis, efficient cancer therapy remains a goal towards alleviating this serious health issue. Since UPS has become a promising target for anticancer therapies, herein we provide comprehensive review of the ubiquitin proteasome system as a significant process for protein degradation. Herein, the anti-cancer therapeutic potential of this pathway is also discussed.


Author(s):  
Julia Jülg ◽  
Laura Strohm ◽  
Christian Behrends

Besides the ubiquitin-proteasome-system, autophagy is a major degradation pathway within cells. It delivers invading pathogens, damaged organelles, aggregated proteins and other macromolecules from the cytosol to the lysosome for bulk degradation. This so-called canonical autophagy activity contributes to the maintenance of organelle, protein and metabolite homeostasis as well as innate immunity. Over the past years, numerous studies rapidly deepened our knowledge on the autophagy machinery and its regulation; driven by the fact that impairment of autophagy is associated with several human pathologies including cancer, immune diseases and neurodegenerative disorders. Unexpectedly, components of the autophagic machinery were also found to participate in various processes that did not involve lysosomal delivery of cytosolic constituents. These functions are hereafter defined as non-canonical autophagy. Regarding neurodegenerative diseases, most research was performed in neurons, while for a long-time microglia received considerably less attention. Concomitant with the notion that microglia greatly contribute to brain health, the understanding of the role of autophagy in microglia expanded. To facilitate an overview of the current knowledge, we present herein the fundamentals as well as the recent advances of canonical and non-canonical autophagy functions in microglia.


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Yasuo Kitajima ◽  
Kiyoshi Yoshioka ◽  
Naoki Suzuki

Abstract Skeletal muscle is one of the most abundant and highly plastic tissues. The ubiquitin–proteasome system (UPS) is recognised as a major intracellular protein degradation system, and its function is important for muscle homeostasis and health. Although UPS plays an essential role in protein degradation during muscle atrophy, leading to the loss of muscle mass and strength, its deficit negatively impacts muscle homeostasis and leads to the occurrence of several pathological phenotypes. A growing number of studies have linked UPS impairment not only to matured muscle fibre degeneration and weakness, but also to muscle stem cells and deficiency in regeneration. Emerging evidence suggests possible links between abnormal UPS regulation and several types of muscle diseases. Therefore, understanding of the role of UPS in skeletal muscle may provide novel therapeutic insights to counteract muscle wasting, and various muscle diseases. In this review, we focussed on the role of proteasomes in skeletal muscle and its regeneration, including a brief explanation of the structure of proteasomes. In addition, we summarised the recent findings on several diseases and elaborated on how the UPS is related to their pathological states.


2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Ruey-Hwa Chen ◽  
Yu-Hsuan Chen ◽  
Tzu-Yu Huang

Abstract Autophagy is a major degradation pathway that utilizes lysosome hydrolases to degrade cellular constituents and is often induced under cellular stress conditions to restore cell homeostasis. Another prime degradation pathway in the cells is ubiquitin-proteasome system (UPS), in which proteins tagged by certain types of polyubiquitin chains are selectively recognized and removed by proteasome. Although the two degradation pathways are operated independently with different sets of players, recent studies have revealed reciprocal cross talks between UPS and autophagy at multiple layers. In this review, we summarize the roles of protein ubiquitination and deubiquitination in controlling the initiation, execution, and termination of bulk autophagy as well as the role of ubiquitination in signaling certain types of selective autophagy. We also highlight how dysregulation of ubiquitin-mediated autophagy pathways is associated with a number of human diseases and the potential of targeting these pathways for disease intervention.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 241 ◽  
Author(s):  
Antonia Wiegering ◽  
Ulrich Rüther ◽  
Christoph Gerhardt

Protein degradation is a pivotal process for eukaryotic development and homeostasis. The majority of proteins are degraded by the ubiquitin–proteasome system and by autophagy. Recent studies describe a crosstalk between these two main eukaryotic degradation systems which allows for establishing a kind of safety mechanism. If one of these degradation systems is hampered, the other compensates for this defect. The mechanism behind this crosstalk is poorly understood. Novel studies suggest that primary cilia, little cellular protrusions, are involved in the regulation of the crosstalk between the two degradation systems. In this review article, we summarise the current knowledge about the association between cilia, the ubiquitin–proteasome system and autophagy.


2000 ◽  
Vol 88 (3) ◽  
pp. 1134-1141 ◽  
Author(s):  
George A. Ordway ◽  
P. Darrell Neufer ◽  
Eva R. Chin ◽  
George N. DeMartino

Remodeling of skeletal muscle in response to altered patterns of contractile activity is achieved, in part, by the regulated degradation of cellular proteins. The ubiquitin-proteasome system is a dominant pathway for protein degradation in eukaryotic cells. To test the role of this pathway in contraction-induced remodeling of skeletal muscle, we used a well-established model of continuous motor nerve stimulation to activate tibialis anterior (TA) muscles of New Zealand White rabbits for periods up to 28 days. Western blot analysis revealed marked and coordinated increases in protein levels of the 20S proteasome and two of its regulatory proteins, PA700 and PA28. mRNA of a representative proteasome subunit also increased coordinately in contracting muscles. Chronic contractile activity of TA also increased total proteasome activity in extracts, as measured by the hydrolysis of a proteasome-specific peptide substrate, and the total capacity of the ubiquitin-proteasome pathway, as measured by the ATP-dependent hydrolysis of an exogenous protein substrate. These results support the potential role of the ubiquitin-proteasome pathway of protein degradation in the contraction-induced remodeling of skeletal muscle.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8638 ◽  
Author(s):  
Jing-Yao Song ◽  
Xue-Guang Wang ◽  
Zi-Yuan Zhang ◽  
Lin Che ◽  
Bin Fan ◽  
...  

Objective Endoplasmic reticulum (ER) stress is involved in the pathogenesis of various ophthalmic diseases, and ER stress-mediated degradation systems play an important role in maintaining ER homeostasis during ER stress. The purpose of this review is to explore the potential relationship between them and to find their equilibrium sites. Design This review illustrates the important role of reasonable regulation of the protein degradation system in ER stress-mediated ophthalmic diseases. There were 128 articles chosen for review in this study, and the keywords used for article research are ER stress, autophagy, UPS, ophthalmic disease, and ocular. Data sources The data are from Web of Science, PubMed, with no language restrictions from inception until 2019 Jul. Results The ubiquitin proteasome system (UPS) and autophagy are important degradation systems in ER stress. They can restore ER homeostasis, but if ER stress cannot be relieved in time, cell death may occur. However, they are not independent of each other, and the relationship between them is complementary. Therefore, we propose that ER stability can be achieved by adjusting the balance between them. Conclusion The degradation system of ER stress, UPS and autophagy are interrelated. Because an imbalance between the UPS and autophagy can cause cell death, regulating that balance may suppress ER stress and protect cells against pathological stress damage.


Physiology ◽  
2003 ◽  
Vol 18 (1) ◽  
pp. 29-33 ◽  
Author(s):  
Lars Klimaschewski

Various studies identified the ubiquitin-proteasome system as the prime suspect in causing neurodegenerative diseases. The present review summarizes our current knowledge about the expression, regulation, and functions of this major protein degradation pathway in the brain, with particular reference to the pathogenesis of associated neurological diseases.


Sign in / Sign up

Export Citation Format

Share Document