scholarly journals COVID-19, Mast Cells, Cytokine Storm, Psychological Stress, and Neuroinflammation

2020 ◽  
Vol 26 (5-6) ◽  
pp. 402-414 ◽  
Author(s):  
Duraisamy Kempuraj ◽  
Govindhasamy Pushpavathi Selvakumar ◽  
Mohammad Ejaz Ahmed ◽  
Sudhanshu P. Raikwar ◽  
Ramasamy Thangavel ◽  
...  

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new pandemic infectious disease that originated in China. COVID-19 is a global public health emergency of international concern. COVID-19 causes mild to severe illness with high morbidity and mortality, especially in preexisting risk groups. Therapeutic options are now limited to COVID-19. The hallmark of COVID-19 pathogenesis is the cytokine storm with elevated levels of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-alpha (TNF-α), chemokine (C-C-motif) ligand 2 (CCL2), and granulocyte-macrophage colony-stimulating factor (GM-CSF). COVID-19 can cause severe pneumonia, and neurological disorders, including stroke, the damage to the neurovascular unit, blood-brain barrier disruption, high intracranial proinflammatory cytokines, and endothelial cell damage in the brain. Mast cells are innate immune cells and also implicated in adaptive immune response, systemic inflammatory diseases, neuroinflammatory diseases, traumatic brain injury and stroke, and stress disorders. SARS-CoV-2 can activate monocytes/macrophages, dendritic cells, T cells, mast cells, neutrophils, and induce cytokine storm in the lung. COVID-19 can activate mast cells, neurons, glial cells, and endothelial cells. SARS-CoV-2 infection can cause psychological stress and neuroinflammation. In conclusion, COVID-19 can induce mast cell activation, psychological stress, cytokine storm, and neuroinflammation.

2008 ◽  
Vol 105 (46) ◽  
pp. 18053-18057 ◽  
Author(s):  
Katherine M. Nautiyal ◽  
Ana C. Ribeiro ◽  
Donald W. Pfaff ◽  
Rae Silver

Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.


2021 ◽  
pp. 000348942199503
Author(s):  
Michael A. Belsky ◽  
Erica Corredera ◽  
Hridesh Banerjee ◽  
John Moore ◽  
Li Wang ◽  
...  

Objectives: Previous work showed that higher polyp mast cell load correlated with worse postoperative endoscopic appearance in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). Polyp epithelial mast cells showed increased expression of T-cell/transmembrane immunoglobulin and mucin domain protein 3 (TIM-3), a receptor that promotes mast cell activation and cytokine production. In this study, CRSwNP patients were followed post-operatively to investigate whether mast cell burden or TIM-3 expression among mast cells can predict recalcitrant disease. Methods: Nasal polyp specimens were obtained via functional endoscopic sinus surgery (FESS) and separated into epithelial and stromal layers via enzymatic digestion. Mast cells and TIM-3-expressing mast cells were identified via flow cytometry. Mann-Whitney U tests and Cox proportional hazard models assessed whether mast cell burden and TIM-3 expression were associated with clinical outcomes, including earlier recurrence of polypoid edema and need for treatment with steroids. Results: Twenty-three patients with CRSwNP were studied and followed for 6 months after undergoing FESS. Higher mast cell levels were associated with earlier recurrence of polypoid edema: epithelial HR = 1.283 ( P = .02), stromal HR = 1.103 ( P = .02). Percent of mast cells expressing TIM-3 in epithelial or stromal layers was not significantly associated with earlier recurrence of polypoid edema. Mast cell burden and TIM-3+ expression were not significantly associated with need for future treatment with steroids post-FESS. Conclusions: Mast cell load in polyp epithelium and stroma may predict a more refractory postoperative course for CRSwNP patients. The role of TIM-3 in the chronic inflammatory state seen in CRSwNP remains unclear.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1759
Author(s):  
Yuhki Yanase ◽  
Shunsuke Takahagi ◽  
Koichiro Ozawa ◽  
Michihiro Hide

Chronic spontaneous urticaria (CSU) is a common skin disorder characterized by an almost daily recurrence of wheal and flare with itch for more than 6 weeks, in association with the release of stored inflammatory mediators, such as histamine, from skin mast cells and/or peripheral basophils. The involvement of the extrinsic coagulation cascade triggered by tissue factor (TF) and complement factors, such as C3a and C5a, has been implied in the pathogenesis of CSU. However, it has been unclear how the TF-triggered coagulation pathway and complement factors induce the activation of skin mast cells and peripheral basophils in patients with CSU. In this review, we focus on the role of vascular endothelial cells, leukocytes, extrinsic coagulation factors and complement components on TF-induced activation of skin mast cells and peripheral basophils followed by the edema formation clinically recognized as urticaria. These findings suggest that medications targeting activated coagulation factors and/or complement components may represent new and effective treatments for patients with severe and refractory CSU.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Ilze Bot ◽  
Saskia C de Jager ◽  
Alma Zernecke ◽  
Christian Weber ◽  
Theo J van Berkel ◽  
...  

Activated mast cells have been identified in the perivascular tissue of human coronary artery plaques. As mast cells have been described to release a whole array of chemokines including interleukin 8 (IL-8) and MIP1 α, we propose that activated mast cells play a pivotal role in leukocyte recruitment at advanced stages of atherosclerotic plaque development. Peritoneal mast cells of either C57Bl/6 or mast cell deficient Kit(W −sh /W −sh ) mice were activated by injection of compound 48/80 (1.2 mg/kg). Interestingly, mast cell activation led to a massive neutrophil influx into the peritoneal cavity at 3 hours after activation (controls: 1 ± 0.7*10 4 Gr1 + -neutrophils/ml up to 8 ± 0.2*10 4 Gr1 + neutrophils/ml at 3 hours after activation, *P<0.05), while neutrophil numbers in Kit(W −sh /W −sh ) mice were not affected by compound 48/80 administration. Moreover, increased levels of CXCR2 + Gr1 + neutrophils (t=0: 0.55 ± 0.07% versus t=3 hours: 1.00 ± 0.12%, *P<0.05) were observed after mast cell activation. Next, we investigated whether mast cell activation also translated in induced leukocyte adhesion to advanced atherosclerotic plaques. Adventitial mast cells of advanced collar aided carotid artery plaques were activated by local application of a dinitrophenyl-BSA (DNP) challenge in ApoE −/− mice. Three days later, the carotid artery segments carrying the plaques were isolated and perfused ex vivo with rhodamine labeled leukocytes, showing a dramatically increased number of adherent leukocytes after mast cell activation (49 ± 6 versus 19 ± 4 leukocytes/microscopic field for DNP versus control plaques, respectively, **P<0.001). Strikingly, antibody blockade of either the CXCR2 or VCAM-1 receptor VLA-4 on labeled leukocytes completely inhibited leukocyte adhesion to the atherosclerotic plaque (*P<0.05), while blockade of CCR1, -3 and -5 with Met-RANTES had no effect. In conclusion, our data suggest that chemokines such as IL-8 released from activated perivascular mast cells induce leukocyte recruitment and adhesion to the atherosclerotic plaque, aggravating the ongoing inflammatory response and thus effecting plaque destabilization. We propose that mast cell stabilization could be a new therapeutic approach in the prevention of acute coronary syndromes.


1999 ◽  
Vol 86 (1) ◽  
pp. 202-210 ◽  
Author(s):  
N. Noviski ◽  
J. P. Brewer ◽  
W. A. Skornik ◽  
S. J. Galli ◽  
J. M. Drazen ◽  
...  

Exposure to ambient ozone (O3) is associated with increased exacerbations of asthma. We sought to determine whether mast cell degranulation is induced by in vivo exposure to O3in mice and whether mast cells play an essential role in the development of pulmonary pathophysiological alterations induced by O3. For this we exposed mast cell-deficient WBB6F1- kitW/ kitW-v( kitW/ kitW-v) mice and the congenic normal WBB6F1(+/+) mice to air or to 1 or 3 parts/million O3for 4 h and studied them at different intervals from 4 to 72 h later. We found evidence of O3-induced cutaneous, as well as bronchial, mast cell degranulation. Polymorphonuclear cell influx into the pulmonary parenchyma was observed after exposure to 1 part/milllion O3only in mice that possessed mast cells. Airway hyperresponsiveness to intravenous methacholine measured in vivo under pentobarbital anesthesia was observed in both kitW/ kitW-vand +/+ mice after exposure to O3. Thus, although mast cells are activated in vivo by O3and participate in O3-induced polymorphonuclear cell infiltration into the pulmonary parenchyma, they do not participate detectably in the development of O3-induced airway hyperresponsiveness in mice.


2013 ◽  
Vol 81 (6) ◽  
pp. 2085-2094 ◽  
Author(s):  
Elin Rönnberg ◽  
Gabriela Calounova ◽  
Bengt Guss ◽  
Anders Lundequist ◽  
Gunnar Pejler

ABSTRACTGranzymes are serine proteases known mostly for their role in the induction of apoptosis. Granzymes A and B have been extensively studied, but relatively little is known about granzymes C to G and K to M. T cells, lymphohematopoietic stromal cells, and granulated metrial gland cells express granzyme D, but the function of granzyme D is unknown. Here we show that granzyme D is expressed by murine mast cells and that its level of expression correlates positively with the extent of mast cell maturation. Coculture of mast cells with live, Gram-positive bacteria caused a profound, Toll-like receptor 2 (TLR2)-dependent induction of granzyme D expression. Granzyme D expression was also induced by isolated bacterial cell wall components, including lipopolysaccharide (LPS) and peptidoglycan, and by stem cell factor, IgE receptor cross-linking, and calcium ionophore stimulation. Granzyme D was released into the medium in response to mast cell activation. Granzyme D induction was dependent on protein kinase C and nuclear factor of activated T cells (NFAT). Together, these findings identify granzyme D as a novel murine mast cell protease and implicate granzyme D in settings where mast cells are activated, such as bacterial infection and allergy.


Author(s):  
Goutham Pattabiraman ◽  
Ashlee J Bell-Cohn ◽  
Stephen F. Murphy ◽  
Daniel J Mazur ◽  
Anthony J Schaeffer ◽  
...  

Intraurethral inoculation of mice with uropathogenic E. coli (CP1) results in prostate inflammation, fibrosis, and urinary dysfunction, recapitulating some but not all of the pathognomonic clinical features associated with benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). In both patients with LUTS and in CP1-infected mice, we observed increased numbers and activation of mast cells and elevated levels of prostate fibrosis. Therapeutic inhibition of mast cells using a combination of mast cell stabilizer (MCS), cromolyn sodium, and the histamine 1 receptor antagonist (H1RA), cetirizine di-hydrochloride, in the mouse model resulted in reduced mast cell activation in the prostate and significant alleviation of urinary dysfunction. Treated mice showed reduced prostate fibrosis, less infiltration of immune cells, and decreased inflammation. In addition, as opposed to symptomatic CP1-infected mice, treated mice showed reduced myosin light chain (MLC)-2 phosphorylation, a marker of prostate smooth muscle contraction. These results show that mast cells play a critical role in the pathophysiology of urinary dysfunction and may be an important therapeutic target for men with BPH/LUTS.


2017 ◽  
Vol 6 (20;6) ◽  
pp. E849-E861
Author(s):  
Gerhard J. Molderings

Systemic mast cell activation disease (MCAD, a subclass of mastocytosis), which has a prevalence of around 17% (at least in the German population), is characterized by accumulation of genetically altered dysfunctional mast cells with abnormal release of these cells’ mediators. Since mast cells affect functions in potentially every organ system, often without causing abnormalities in routine laboratory or radiologic testing, this disease has to be considered routinely in the differential diagnosis of patients with chronic multisystem polymorbidity of a generally inflammatory and allergic theme. Pain in its different manifestations is a common symptom in MCAD found in more than three-quarters of the MCAD patients. Because of the specific mast cell-related causes of pain in MCAD it should be treated specifically, if possible, deduced from their putative mast cell mediator-related causes. As yet, there is no official guideline for treatment of MCAD at all. The present review focuses on mast cell mediator-induced acute and chronic pain and the current state of analgesic drug therapy options in MCAD. Due to the high prevalence of MCAD, many physicians are often faced with the issue of pain management in MCAD patients. Hence, our practical guide should contribute to the improvement of patient care.


1992 ◽  
Vol 175 (1) ◽  
pp. 245-255 ◽  
Author(s):  
B K Wershil ◽  
M Tsai ◽  
E N Geissler ◽  
K M Zsebo ◽  
S J Galli

Interactions between products of the mouse W locus, which encodes the c-kit tyrosine kinase receptor, and the Sl locus, which encodes a ligand for c-kit receptor, which we have designated stem cell factor (SCF), have a critical role in the development of mast cells. Mice homozygous for mutations at either locus exhibit several phenotypic abnormalities including a virtual absence of mast cells. Moreover, the c-kit ligand SCF can induce the proliferation and maturation of normal mast cells in vitro or in vivo, and also can result in repair of the mast cell deficiency of Sl/Sld mice in vivo. We now report that administration of SCF intradermally in vivo results in dermal mast cell activation and a mast cell-dependent acute inflammatory response. This effect is c-kit receptor dependent, in that it is not observed when SCF is administered to mice containing dermal mast cells expressing functionally inactive c-kit receptors, is observed with both glycosylated and nonglycosylated forms of SCF, and occurs at doses of SCF at least 10-fold lower on a molar basis than the minimally effective dose of the classical dermal mast cell-activating agent substance P. These findings represent the first demonstration in vivo that a c-kit ligand can result in the functional activation of any cellular lineage expressing the c-kit receptor, and suggest that interactions between the c-kit receptor and its ligand may influence mast cell biology through complex effects on proliferation, maturation, and function.


2020 ◽  
Vol 21 (4) ◽  
pp. 1498 ◽  
Author(s):  
David O. Lyons ◽  
Nicholas A. Pullen

Mast cells are often regarded through the lens of IgE-dependent reactions as a cell specialized only for anti-parasitic and type I hypersensitive responses. However, recently many researchers have begun to appreciate the expansive repertoire of stimuli that mast cells can respond to. After the characterization of the interleukin (IL)-33/suppression of tumorigenicity 2 (ST2) axis of mast cell activation—a pathway that is independent of the adaptive immune system—researchers are revisiting other stimuli to induce mast cell activation and/or subsequent degranulation independent of IgE. This discovery also underscores that mast cells act as important mediators in maintaining body wide homeostasis, especially through barrier defense, and can thus be the source of disease as well. Particularly in the gut, inflammatory bowel diseases (Crohn’s disease, ulcerative colitis, etc.) are characterized with enhanced mast cell activity in the context of autoimmune disease. Mast cells show phenotypic differences based on tissue residency, which could manifest as different receptor expression profiles, allowing for unique mast cell responses (both IgE and non-IgE mediated) across varying tissues as well. This variety in receptor expression suggests mast cells respond differently, such as in the gut where immunosuppressive IL-10 stimulates the development of food allergy or in the lungs where transforming growth factor-β1 (TGF-β1) can enhance mast cell IL-6 production. Such differences in receptor expression illustrate the truly diverse effector capabilities of mast cells, and careful consideration must be given toward the phenotype of mast cells observed in vitro. Given mast cells’ ubiquitous tissue presence and their capability to respond to a broad spectrum of non-IgE stimuli, it is expected that mast cells may also contribute to the progression of autoimmune disorders and other disease states such as metastatic cancer through promoting chronic inflammation in the local tissue microenvironment and ultimately polarizing toward a unique Th17 immune response. Furthermore, these interconnected, atypical activation pathways may crosstalk with IgE-mediated signaling differently across disorders such as parasitism, food allergies, and autoimmune disorders of the gut. In this review, we summarize recent research into familiar and novel pathways of mast cells activation and draw connections to clinical human disease.


Sign in / Sign up

Export Citation Format

Share Document