Dimensioning of thick-walled spherical and cylindrical pressure vessels

2017 ◽  
Vol 25 (7) ◽  
pp. 1405-1415 ◽  
Author(s):  
Patrick Schneider ◽  
Reinhold Kienzler

In this contribution, we revisit the rather classical problem of Lamé and provide a novel and easy way to plot the stress distributions and the overall absolute maximum von Mises stress for arbitrary parameters in only two diagrams. We also provide a maximum hoop stress formula for combined loading and an extensive discussion covering the accuracy of dimensioning via the maximum hoop stress instead of the maximum von Mises stress, as well as the accuracy of the classical approximative hoop stress formulas.

Author(s):  
Erik Garrido ◽  
Euro Casanova

It is a regular practice in the oil industry to modify mechanical equipment to incorporate new technologies and to optimize production. In the case of pressure vessels, it is occasionally required to cut large openings in their walls in order to have access to the interior part of the equipment for executing modifications. This cutting process produces temporary loads, which were obviously not considered in the original mechanical design. Up to now, there is not a general purpose specification for approaching the assessments of stress levels once a large opening in a vertical pressure vessel has been made. Therefore stress distributions around large openings are analyzed on a case-by-case basis without a reference scheme. This work studies the distribution of the von Mises equivalent stresses around a large opening in FCC Regenerators during internal cyclone replacement, which is a frequently required practice for this kind of equipment. A finite element parametric model was developed in ANSYS, and both numerical results and illustrating figures are presented.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 301
Author(s):  
Jiaqi Chen ◽  
Hao Wang ◽  
Milad Salemi ◽  
Perumalsamy N. Balaguru

Carbon fiber reinforced polymer (CFRP) matrix composite overwrap repair systems have been introduced and accepted as an alternative repair system for steel pipeline. This paper aimed to evaluate the mechanical behavior of damaged steel pipeline with CFRP repair using finite element (FE) analysis. Two different repair strategies, namely wrap repair and patch repair, were considered. The mechanical responses of pipeline with the composite repair system under the maximum allowable operating pressure (MAOP) was analyzed using the validated FE models. The design parameters of the CFRP repair system were analyzed, including patch/wrap size and thickness, defect size, interface bonding, and the material properties of the infill material. The results show that both the stress in the pipe wall and CFRP could be reduced by using a thicker CFRP. With the increase in patch size in the hoop direction, the maximum von Mises stress in the pipe wall generally decreased as the maximum hoop stress in the CFRP increased. The reinforcement of the CFRP repair system could be enhanced by using infill material with a higher elastic modulus. The CFRP patch tended to cause higher interface shear stress than CFRP wrap, but the shear stress could be reduced by using a thicker CFRP. Compared with the fully bonded condition, the frictional interface causes a decrease in hoop stress in the CFRP but an increase in von Mises stress in the steel. The study results indicate the feasibility of composite repair for damaged steel pipeline.


Author(s):  
Z Yi ◽  
WZ Fu ◽  
MZ Li

In order to obtain a higher pressure capacity for the high-pressure die with a larger sample cavity, two types of two-layer split dies with a round cylinder and a quadrate cylinder were designed based on the conventional belt-type die. Finite element analysis was performed to investigate the stress distributions and pressure capacities of the high-pressure dies using a derived Mohr–Coulomb criterion and the von Mises criterion for the cylinder and supporting rings, respectively. As predicted by the finite element analysis results, in the two-layer split dies with a round cylinder, the stress state of the cylinder can be only slightly improved; and the von Mises stress of the first layer supporting ring can be hardly decreased. However, in the two-layer split dies with a quadrate cylinder and sample cavity, the stress state of the cylinder can be remarkably improved. Simultaneously, the von Mises stress of the supporting rings, especially for the first-layer supporting ring, can be also effectively decreased. The pressure capacities of the two-layer split dies with a round cylinder and a quadrate cylinder are 16.5% and 63.9% higher with respect to the conventional belt-type die.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1708 ◽  
Author(s):  
Maciej Zarow ◽  
Mirco Vadini ◽  
Agnieszka Chojnacka-Brozek ◽  
Katarzyna Szczeklik ◽  
Grzegorz Milewski ◽  
...  

By means of a finite element method (FEM), the present study evaluated the effect of fiber post (FP) placement on the stress distribution occurring in endodontically treated upper first premolars (UFPs) with mesial–occlusal–distal (MOD) nanohybrid composite restorations under subcritical static load. FEM models were created to simulate four different clinical situations involving endodontically treated UFPs with MOD cavities restored with one of the following: composite resin; composite and one FP in the palatal root; composite and one FP in the buccal root; or composite and two FPs. As control, the model of an intact UFP was included. A simulated load of 150 N was applied. Stress distribution was observed on each model surface, on the mid buccal–palatal plane, and on two horizontal planes (at cervical and root-furcation levels); the maximum Von Mises stress values were calculated. All analyses were replicated three times, using the mechanical parameters from three different nanohybrid resin composite restorative materials. In the presence of FPs, the maximum stress values recorded on dentin (in cervical and root-furcation areas) appeared slightly reduced, compared to the endodontically treated tooth restored with no post; in the same areas, the overall Von Mises maps revealed more favorable stress distributions. FPs in maxillary premolars with MOD cavities can lead to a positive redistribution of potentially dangerous stress concentrations away from the cervical and the root-furcation dentin.


Volume 1 ◽  
2004 ◽  
Author(s):  
M. M. Villar ◽  
M. M. Pe´rez

In this paper a numerical model is used to investigate the effect of the elasticity of the bearing in the pressure distribution in the lubricant and the stress distribution in the bearing. The lubricant film, as well as a bearing, including the lining and the backing of the insert, and the housing, are modeled using the general-purpose ANSYS®5.7 commercial Finite Element program. Results have been obtained for the pressure, radial displacement, hoop and von Mises stress distributions at the surface of the bearing, as well as for the shear stress distribution at the interface between the lining and the backing. A number of conclusions have been drawn regarding the relative significance of the steep pressure gradient at the end of the lubricated region on the hoop stresses that cause localized bending distortions at the surface of the lining. These localized bending distortions, in turn, are likely to cause fatigue failure of the lining.


2014 ◽  
Vol 792 ◽  
pp. 15-20 ◽  
Author(s):  
Masanori Tsuchimoto

Stresses are induced in a bulk high-Tc superconductor (HTS) by field-cooled magnetization. The stress distributions of a hollow cylindrical bulk HTS are numerically studied in the axisymmetric three-dimensional analysis. Shielding current distributions are obtained through a macroscopic numerical simulation with the Maxwell equations and the critical state model. Stress distributions are obtained by using the finite-difference method and iterative calculations. Maximum hoop stress during the field-cooled magnetization is discussed for open and fixed boundary conditions.


2006 ◽  
Vol 324-325 ◽  
pp. 563-566 ◽  
Author(s):  
Qing Min Yu ◽  
Zhu Feng Yue ◽  
Yong Shou Liu

In this paper, a plate containing a central hole was used to simulate gas turbine blade with cooling hole. Numerical calculations based on crystal plasticity theory have been performed to study the elastic-plastic stress field near the hole under tension. Two crystallographic orientations [001] and [111] were considered. The distributions of resolved shear stresses and strains of the octahedral slip systems {110}<112> were calculated. The results show that the crystallographic orientation has remarkable influence on both von Mises stress and resolved shear stress distributions. The resolved shear stress distributions around the hole are different between the two orientations, which lead to the different activated slip systems. So the deformed shape of the hole in [001] orientation differs from that in [111] orientation.


2014 ◽  
Vol 670-671 ◽  
pp. 715-719
Author(s):  
Qian Zhou

Free-standing museum cultural relics are easy to fall off exhibition booth and get damaged under earthquakes. To find an effective method to mitigate damage of cultural relics due to fall off, influences of soft pad under relic was studied by ANSYS/LS-DYNA program. A bronze relic supported by a soft pad was selected for analysis. Based on material properties of both the relic and the pad, finite element model of the relic was built. By simulation, Von mises stress distributions, acceleration response curves as well as kinetic energy curves of the relic were obtained; effects of the soft pad to mitigate damage of the relic were discussed. Results show that collision between the falling museum cultural relic and ground can be mitigated by soft pad due to its buffer as well as energy absorption effects. It is suggested to use soft pad under relic to provide protection. Besides, by ANSYS/LS-DYNA program, falling off process of free-standing museum cultural relics can be effectively simulated.


2010 ◽  
Vol 1246 ◽  
Author(s):  
Roman Victorovich Drachev ◽  
Darren Hansen ◽  
Mark J Loboda

AbstractAn analytical study of the dependence of shear and von-Mises stress distributions, which develop during PVT (Physical Vapor Transport) growth of 4H-SiC, has been executed. The key parameters investigated include thermal conditions of the crystal growth and parameters of the growing boule geometry. The evaluation was conducted via a 24 full factorial DOE (Design of Experiments). Parameters of the growing boule geometry, i.e. seed diameter, growth front height, inclination angle and height of the side surface were set as the DOE factors, while responses were calculated using numerical simulations. It is found that unique SiC boule growth conditions, which simultaneously minimize both the shear stress and von Mises stress magnitudes, cannot be achieved. Optimization of the shear stress distribution favors longer SiC boules with small seed diameters, small expansion angles and flat growth fronts. Alternatively, optimization of von-Mises stress favors short crystals with small seed diameters and small expansion angles but with curved growth fronts. Consequently, optimization of stress components in SiC crystals involves careful investigation of the interaction and compromise of the reaction cell geometry and growth conditions.


2007 ◽  
Vol 353-358 ◽  
pp. 2211-2214
Author(s):  
Cheol Woong Kim ◽  
Bong Su Kang ◽  
Kee Joo Kim ◽  
Jin Yi Lee

The research of the stress distributions and the structural deformation at the sliding core in artificial intervertebral disc under the dorsiflexion is becoming more significant. This research analyzes the finite element model of sliding core and evaluates the effect of radius of curvature and the friction coefficient at the sliding core on von-Mises stress and the contact pressure. New Models of the artificial intervertebral disc are suggested by the results of the sliding core is evaluated by the comparison of that of SB Charité III. Based on the above facts, the optimized radius of curvature of the sliding core is also suggested.


Sign in / Sign up

Export Citation Format

Share Document