Microwave Assisted Drying of Short-Cut (Ditalini) Macaroni: Cooking Process and Textural Properties

2004 ◽  
Vol 10 (3) ◽  
pp. 187-196 ◽  
Author(s):  
A. Altan ◽  
M. Maskan

The colour, re-hydration capacity and macaroni cooking quality, related to cooked weight, cooking loss and firmness of drying of short-cut (ditalini) macaroni were evaluated. The textural properties of uncooked and cooked macaroni samples were measured using a TA-XT2i texture analyser. Protein denaturation of dried samples increased significantly with microwave power level. Physical and textural properties of macaroni samples dried with combined hot air/microwave (210 W) were equal to or better than those dried with hot air. Also, hot air/microwave combination drying exhibited superior cooking properties. Firmness of samples increased while cooking loss decreased generally with microwave application after hot air drying, i.e., hot air/microwave combination shortened the drying time and improved many of the physical, textural and cooking properties of macaroni samples.

2012 ◽  
Vol 538-541 ◽  
pp. 2413-2416
Author(s):  
Nuchtida Promtong ◽  
Thanate Ratanawilai ◽  
Chayut Nuntadusit

Applying microwave heating and impinging hot-air is one of the most interesting methods to increase the higher drying rates of rubberwood drying based on acceptable quality. A maximum microwave power level of 200W at a frequency of 2.45GHz with maximum working temperature of 70°C, only hotair (70°C) and combined microwave (200W) - hotair (70°C) were choosed to evaluate the effect of rubberwood drying by different width sizes (1, 2, 3 and 4 in.) by 46 in. length by 1 in. thick. In all cases, the drying time is reduced significantly from 168 h to less than 8-15 h in various wood widths and resulted in saving to an extent of about 91% of drying time from initial moisture content ranges of 73%-49% to 15% percent of moisture level. Drying stresses from prong test no found during drying and total color of rubberwood changed after high temperature drying is a natural surface when compared to fresh wood. The values of six strength compared to the reference values are concentrated in the ranges of 16.9-23.9 (11.0)MPa for shearing strength parallel to grain, 4291.1-6701.6 (4350)N for hardness, 73.3-110.2 (66.0)MPa for MOR, 7059.5-12856.7 (9240.0) MPa for MOE, 27.2-14.3 (5.0)MPa for compressive strength perpendicular to grain and 60.6-35.7 (32.0)MPa for compression strength parallel to grain. These results show that it is possible to develop a drying process for rubberwood using microwave-hot air in investigating further in this area.


2020 ◽  
pp. 108201322098133
Author(s):  
Sagar Nagvanshi ◽  
Subbarao Kotra Venkata ◽  
TK Goswami

Microwave drying works on the volumetric heating concept promoted by electromagnetic radiation at 0.915 or 2.450 GHz. In this study, banana ( Musa Cavendish) was taken as the sample and treated under microwave drying. The effect of two process variables, namely slice thickness (2, 3.5, and 5 mm) and microwave power (180 W, 360 W, and 540 W), were studied on drying kinetics and color kinetics. It was observed that the inverse variation relationship exists between drying time and microwave power level while drying time and slice thickness exhibited a direct variation relationship. A Computer Vision System (CVS) was developed to measure the color values of banana in CIELab space using an algorithm written in MATLAB software. Once the color parameters were obtained, they were fitted in First and Zero-order kinetic models. Both models were found to describe the color values adequately. This study concludes that microwave drying is a promising dehydration technique for banana drying that reduces the significant time of drying. Application of CVS is an excellent approach to measure the surface color of banana.


2018 ◽  
Vol 33 (4) ◽  
pp. 581-591
Author(s):  
Aron Tysén ◽  
Hannes Vomhoff ◽  
Lars Nilsson

Abstract The use of infrared radiation for heating the web in the through air drying process was investigated in lab scale. The hypothesis was that infrared radiation should be a more efficient method to transfer drying energy to the wet web compared to hot air, but that a certain air flow is still required as a transport medium for the evaporated water. A trial program comprising handsheets made of two types of bleached chemical pulps, five grammages (15, 22, 30 and 60 g/m²), and dried with five radiator power levels was performed on a lab scale through air drying equipment. Drying times of the samples were determined from temperature data recorded with an infrared camera. The use of infrared radiation shortened drying times, especially for low grammage samples. The shortening of the drying time ranged between 10 and 45 %. The most substantial shortenings were obtained for the lowest grammages and the highest radiator power level. However, the increase of power did not linearly shorten drying time. After an initial shortening at the lowest power level, the positive effect of the IR heating decreased as the power was further increased.


2014 ◽  
Vol 953-954 ◽  
pp. 16-19 ◽  
Author(s):  
Yuttachai Keawsuntia

This research paper presents the experimental results of drying of chili by using the active solar dryer and sun drying because of chili is a commercial agricultural product of Thailand. The active solar dryer consisted of a solar collector, a drying chamber and a chimney. The small fans were installed in the solar collector of active solar dryer to provide the air flow circulated in the solar collector and a drying chamber. Drying of chili of 20 kg from moisture content 84 percent wet basis to 10 percent wet basis following the Thai Agricultural Standard (TAS 3001-2010) showed that the use of the active solar dryer to make the drying time reduced about 28.7 percent compared with sun drying because of the hot air temperature inside the drying chamber higher than the ambient temperature about 10 to 15 . The quality of dried chili from the active solar dryer better than dried chili from sun drying.


2019 ◽  
Vol 37 (No. 1) ◽  
pp. 69-74 ◽  
Author(s):  
Ayla Isik ◽  
Murat Ozdemir ◽  
Ibrahim Doymaz

Infrared radiation drying being one of the innovative drying methods was chosen to perform comparative study at different infrared power levels at 50, 62, 74 and 88 W. Quality attributes such as protein, fat, ash, carbohydrate, vitamin C content, solubility index and colour of infrared dried bee pollen samples were evaluated. The infrared power has a significant effect on the drying and quality characteristics especially colour. Drying time was reduced from 170 to 50 min when the infrared power level increased from 50 W to 88 W. Morphological changes on the surface of bee pollen grains increased with increasing the infrared power. The bee pollen infrared dried at 50 W retained its quality characteristics better than the bee pollens infrared dried at other power levels.


Foods ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 496 ◽  
Author(s):  
Abdallah Bouasla ◽  
Agnieszka Wójtowicz

A new type of gluten-free pasta has been developed based on a rice-buckwheat mixture. The aim of the study was to investigate the effect of process parameters of moisture content (30, 33, and 36%), barrel temperature (80, 100, and 120 °C), and screw speed (60, 80, and 100 rpm) on cooking and textural properties of rice-buckwheat pasta produced by a single-screw extrusion-cooker. The process uses response surface methodology based on a Box-Behnken experimental design. Results showed that with regard to this rice-buckwheat pasta, raising moisture content of the raw materials increased cooking loss and stickiness, but decreased firmness, while increasing barrel temperature reduced cooking loss and stickiness, but increased hardness and firmness. Screw speed increase also affected positively hardness and firmness of the obtained products. Thus, optimal conditions (moisture content 30%, barrel temperature 120 °C, and screw speed 80 rpm) were established to produce good quality rice-buckwheat pasta. At this optimum, the pasta showed a compact and homogeneous inside microstructure. Furthermore, the pasta products exhibited low cooking loss (less than 6%), good hardness and firmness, with low stickiness and acceptable scores for all sensory attributes and for overall quality.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 226
Author(s):  
Katarzyna Rybak ◽  
Artur Wiktor ◽  
Dorota Witrowa-Rajchert ◽  
Oleksii Parniakov ◽  
Małgorzata Nowacka

It has been demonstrated previously in the literature that utilization of PEF or a combination of a pulsed electric field (PEF) and ultrasounds (US) can facilitate dehydration processes and improve the quality of dried products even better than the application of thermal methods such as blanching. The aim of the study was to evaluate the quality of red bell pepper subjected to freeze-drying preceded by blanching or PEF or US treatment applied in a single and combined mode. Furthermore, the freeze-drying was preceded by shock freezing or vacuum freezing performed inside the freeze-dryer as a result of pressure drop during the first stage of freeze-drying. All of the analyzed technological variants enhanced the drying kinetics when compared to the intact material. Freeze-dried bell pepper subjected to non-thermal pretreatment exhibited higher vitamin C, total phenolic and carotenoids content than blanched material despite the fact that blanching reduced drying time the most compared to all other analyzed methods.


2021 ◽  
Vol 19 (4) ◽  
pp. 265-272
Author(s):  
Sibel İla ◽  
Azmi Seyhun Kipcak ◽  
Emek Moroydor Derun

Potassium borates are one of the minor groups of boron minerals with its distinct non-linear optical properties. In this study, potassium borate compound of santite (KB5O8·4H2O) are synthesized using potassium carbonate (K2CO3) and boric acid (H3BO3) with a new and rapid method of microwave irradiation. The synthesized minerals are characterized by various analysis techniques of X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope (SEM). Three parameters of “microwave power level”, “reaction times” and “reaction stoichiometric constants (elemental potassium to boron ratios)” are determined for the optimum synthesis of potassium borate within the four step. At the end of the step 4, optimum products are obtained as santite type potassium borate. Synthesized potassium borates Raman bands are in mutual agreement with the boron compounds and the overall reaction yields to potassium borates are very high compared with the lower reaction times.


2011 ◽  
Vol 291-294 ◽  
pp. 1335-1338
Author(s):  
Da Biao Zhao

Graft copolymerization of acrylic acid(AA) on starch to prepare super absorbent resin (SAR) under microwave irradiation were investigated using N,N-methylene bis-acrylamide as crosslinker and potassium persulfate as initiator. The influences of the amount of initiator and crosslinker, neutralization degree of acrylic acid(AA), ratio of starch to AA, microwave power level and irradiation time on the distilled water absorption amount of resin were investigated. The results indicated that it only needed 4min under the microwave level of 231W to obtain the resin with the maximum absorption amount of 1110g×g-1, under the conditions that 0.3wt% initiator, 0.02wt% crosslinker, 60% neutralization degree of acrylic acid, the ratio of starch to acrylic acid of 0.25. Under microwave irradiation, the synthesis and drying of super absorbent resin could be completed at one step without nitrogen. Compared to conventional heating method, the methods had the striking advantages of short reaction time, simple process and low cost.


2021 ◽  
Author(s):  
Wittawat Wulyapash ◽  
Awassada Phongphiphat ◽  
Sirintornthep Towprayoon

Abstract Large amounts of sludge are generated from wastewater treatment in seafood processing industries. Most of the dewatered sludge in Thailand is not utilized and disposed by landfilling. The dried sludge utilization as refuse-derived fuel (RDF) is an alternative solution due to the gross calorific value (GCV), which is greater than 21.9 MJ/kg. However, the key obstacle is its high moisture content of 87.4% (wet basis). Therefore, drying methods using hot air and microwave techniques were investigated for preparing dried sludge. The effects of hot air temperatures (100-150 °C) and microwave power levels (100-800 W) were compared on drying kinetics, specific energy consumption (SEC), and characteristics of the dried products. The results showed that drying times were decreased by increasing the hot air temperatures. In the same way, the increase in microwave power levels decreased the drying time. The application of microwaves contributed to reducing the drying time by more than 46% compared to the hot air. The reduction of drying times resulted in the saving SEC. The GCV of the dried sludge decreased with the decrease in the volatile matter (VM) due to the high component of VM as 79.5-80.3% (dry ash-free basis). The sludge dried by the microwaves showed a lower GCV than the hot air products. However, dried sludges still had high GCV (≥ 20.8 MJ/kg). Furthermore, the minimal variation of the product characteristics demonstrated that the microwave technique could be applied as an alternative drying method with a rapid process compared to the conventional hot air technique.


Sign in / Sign up

Export Citation Format

Share Document