Thermodynamics of the Dimensional Changes in the Wheat Kernel during Cooking for Bulgur Production

2004 ◽  
Vol 10 (4) ◽  
pp. 243-253 ◽  
Author(s):  
M. Bayram ◽  
M. D. öner ◽  
S. Eren

Thermodynamics and physical properties of the dimensional changes in the wheat kernel during cooking was carried out for bulgur production at 87, 92 and 97°C for 140min. There were determined changes of the length ( x-dimension), two widths ( y- and z-dimensions), weight, volume and density of the wheat kernel. The length of the wheat kernel during cooking decreased, although crease-side width ( y-dimension) and secondary width ( z-dimension) significantly increased ( p 0.05) at each cooking temperature between 6.95-68.05% and 9.95-69.00%, respectively. The volume of the kernel during cooking also significantly ( p 0.05) increased (27.35-185.20%), and had a greater percentage change value than the weight (19.25-160.70%) due to swelling of the wheat kernel. Therefore, density decreased negatively. Activation energy, enthalpy, entropy and Gibbs free energy were used to describe the changes of physical attributes of the wheat kernel during cooking. Rate constant values for the length and density of the wheat kernel were negative in contrast to positive rate constant values of the widths, weight and volume of the wheat kernel. The influence of cooking temperature on the physical properties of the wheat kernel revealed that the rate of change in the secondary width ( z-dimension), weight and density of the wheat kernel were more sensitive to temperature due to their greater activation energies, 5.95 107, 5.26 107 and 6.11 107 J, respectively. In contrast, the y-dimension of width of the wheat kernel required a lower amount of energy due to crease side. All of the changes in physical properties agreed with the positive values of Gibbs free energy.

Author(s):  
Francislaine Suelia dos Santos ◽  
Rossana Maria Feitosa de Figueirêdo ◽  
Alexandre José de Melo Queiroz ◽  
Ana Raquel Carmo de Lima ◽  
Thalis Leandro Bezerra de Lima

This study aimed to evaluate the effect of drying temperature (50, 60, 70 and 80 °C) on okra dehydration by comparing its powder’s physical properties obtained from a sample produced by a lyophilization process. Ten drying models were adjusted to the experimental data of the drying kinetics. As a result, effective diffusivity and activation energy were determined in addition to thermodynamic parameters: entropy, enthalpy and Gibbs free energy. A physical characterization, as well as the pigments and colorimetry analyses of the aforementioned powders were made, by comparing them with samples produced by lyophilization. The powders were characterized for hygroscopicity, solubility, wettability, apparent and compacted density, fluidity and cohesiveness, pigments, colorimetric, morphological analysis (SEM) and X-ray diffraction. Midilli model was the one that best adjusted to the drying kinetic curves. There was a booster in the effective diffusion coefficient with the increase of temperature. Enthalpy and entropy were reduced with the increase of both drying temperature and Gibbs free energy. The powders presented high luminosity, and the lyophilized powder had higher pigments retention and greater solubility. All powders presented poor fluidity and intermediate cohesiveness, with amorphous, irregular and asymmetric particles. Thus, from the present study it was possible to evaluate the best drying method, the one that should be applied for the drying of okra, considering the costs involved, its quality and the final application of the product, meeting the specific needs of each consumer


Alloy Digest ◽  
1964 ◽  
Vol 13 (3) ◽  

Abstract INVAR is a 36% nickel-iron alloy having the lowest coefficient of expansion, recommended for applications requiring no dimensional changes with temperature variations. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Fe-24. Producer or source: Carpenter.


Author(s):  
Dennis Sherwood ◽  
Paul Dalby

Building on the previous chapter, this chapter examines gas phase chemical equilibrium, and the equilibrium constant. This chapter takes a rigorous, yet very clear, ‘first principles’ approach, expressing the total Gibbs free energy of a reaction mixture at any time as the sum of the instantaneous Gibbs free energies of each component, as expressed in terms of the extent-of-reaction. The equilibrium reaction mixture is then defined as the point at which the total system Gibbs free energy is a minimum, from which concepts such as the equilibrium constant emerge. The chapter also explores the temperature dependence of equilibrium, this being one example of Le Chatelier’s principle. Finally, the chapter links thermodynamics to chemical kinetics by showing how the equilibrium constant is the ratio of the forward and backward rate constants. We also introduce the Arrhenius equation, closing with a discussion of the overall effect of temperature on chemical equilibrium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajibola B. Oyedeji ◽  
Olajide P. Sobukola ◽  
Ezekiel Green ◽  
Oluwafemi A. Adebo

AbstractThe physical properties and water absorption kinetics of three varieties of Mucuna beans (Mucuna pruriens, Mucuna rajada and Mucuna veracruz) were determined in this study. Physical properties including length, width, thickness, geometric mean diameter, sphericity, porosity, bulk density, area, volume and one thousand seed mass were calculated while hydration kinetics was studied by soaking Mucuna beans in water at 30 °C, 40 °C and 50 °C and measuring water uptake at 9 h interval. Peleg’s equation was used to model the hydration characteristics and Arrhenius equation was used to describe the effect of temperature on Peleg’s rate constant k1 and to obtain the activation energies for soaking. Significant variations were observed in almost all the physical properties of the different varieties, however, there were no significant differences (p < 0.05) in their thicknesses and bulk densities. The effectiveness of fit of Peleg’s model (R2) increased with increase in soaking temperature. Peleg’s rate constant k1 decreased with increase in soaking temperature while k2 increased with temperature increase. Activation energies of Mucuna pruriens, Mucuna rajada and Mucuna veracruz were 1613.24 kJ/mol, 747.95 kJ/mol and 2743.64 kJ/mol, respectively. This study provides useful information about the properties of three varieties of Mucuna beans that could be of importance to processors and engineers for process design and optimization.


Langmuir ◽  
2021 ◽  
Author(s):  
Amir Bayat ◽  
Mahdi Ebrahimi ◽  
Saeed Rahemi Ardekani ◽  
Esmaiel Saievar Iranizad ◽  
Alireza Zaker Moshfegh

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1404
Author(s):  
Yunfei Yang ◽  
Changhao Wang ◽  
Junhao Sun ◽  
Shilei Li ◽  
Wei Liu ◽  
...  

In this study, the structural, elastic, and thermodynamic properties of DO19 and L12 structured Co3X (X = W, Mo or both W and Mo) and μ structured Co7X6 were investigated using the density functional theory implemented in the pseudo-potential plane wave. The obtained lattice constants were observed to be in good agreement with the available experimental data. With respect to the calculated mechanical properties and Poisson’s ratio, the DO19-Co3X, L12-Co3X, and μ-Co7X6 compounds were noted to be mechanically stable and possessed an optimal ductile behavior; however, L12-Co3X exhibited higher strength and brittleness than DO19-Co3X. Moreover, the quasi-harmonic Debye–Grüneisen approach was confirmed to be valid in describing the temperature-dependent thermodynamic properties of the Co3X and Co7X6 compounds, including heat capacity, vibrational entropy, and Gibbs free energy. Based on the calculated Gibbs free energy of DO19-Co3X and L12-Co7X6, the phase transformation temperatures for DO19-Co3X to L12-Co7X6 were determined and obtained values were noted to match well with the experiment results.


Sign in / Sign up

Export Citation Format

Share Document