scholarly journals CXCR4 Antagonists

2014 ◽  
Vol 19 (6) ◽  
pp. 859-869 ◽  
Author(s):  
C. Castaldo ◽  
T. Benicchi ◽  
M. Otrocka ◽  
E. Mori ◽  
E. Pilli ◽  
...  

The CXC chemokine receptor 4 (CXCR4) is a widely expressed G protein–coupled receptor implicated in several diseases. In cancer, an increased number of surface CXCR4 receptors, in parallel with aberrant signaling, have been reported to influence several aspects of malignancy progression. CXCR4 activation by the specific ligand C-X-C motif chemokine 12 (CXCL12) induces several intracellular signaling pathways that have been selectively related to malignancy depending on the tissue or cell type. We developed a panel of CXCR4 screening assays investigating Gαi-mediated cyclic adenosine monophosphate modulation, β-arrestin recruitment, and receptor internalization. All of the assays were set up in recombinant cells and were used to test four reported CXCR4 antagonists. Consequently, a set of hit compounds, deriving from a screening campaign of a 30,000-small-molecule internal library, was profiled with the different assays. We identified several compounds showing a pathway-selective activity: antagonists on a Gαi-dependent pathway; antagonists on both the β-arrestin and Gαi-dependent pathways, some of which induce receptor internalization; and compounds with an antagonist behavior in all of the readouts. The identified biased antagonists induce different functional states on CXCR4 and preferentially affect specific downstream responses from the activated receptor, thus providing an improved therapeutic profile for correction of CXCR4 abnormal signaling.

2010 ◽  
Vol 18 (4) ◽  
pp. 6-8
Author(s):  
Stephen W. Carmichael

Some of the receptors on the surface of cardiac muscle cells (cardiomyocytes) mediate the response of these cells to catecholamines by causing the production of the common second messenger cyclic adenosine monophosphate (cAMP). An example of such receptors are the β1- and β2-adrenergic receptors (βARs) that are heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors. Selective stimulation of these two receptor subtypes leads to distinct physiological and pathophysiological responses, but their precise location on the surface of cardiomyocytes has not been correlated with these responses. In an ingenious combination of techniques, Viacheslav Nikolaev, Alexey Moshkov, Alexander Lyon, Michele Miragoli, Pavel Novak, Helen Paur, Martin Lohse, Yuri Korchev, Sian Harding, and Julia Gorelik have mapped the function of these receptors for the first time.


2020 ◽  
Vol 21 (5) ◽  
pp. 1616 ◽  
Author(s):  
Ramoji Kosuru ◽  
Magdalena Chrzanowska

Ca2+ is a universal intracellular signal. The modulation of cytoplasmic Ca2+ concentration regulates a plethora of cellular processes, such as: synaptic plasticity, neuronal survival, chemotaxis of immune cells, platelet aggregation, vasodilation, and cardiac excitation–contraction coupling. Rap1 GTPases are ubiquitously expressed binary switches that alternate between active and inactive states and are regulated by diverse families of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Active Rap1 couples extracellular stimulation with intracellular signaling through secondary messengers—cyclic adenosine monophosphate (cAMP), Ca2+, and diacylglycerol (DAG). Much evidence indicates that Rap1 signaling intersects with Ca2+ signaling pathways to control the important cellular functions of platelet activation or neuronal plasticity. Rap1 acts as an effector of Ca2+ signaling when activated by mechanisms involving Ca2+ and DAG-activated (CalDAG-) GEFs. Conversely, activated by other GEFs, such as cAMP-dependent GEF Epac, Rap1 controls cytoplasmic Ca2+ levels. It does so by regulating the activity of Ca2+ signaling proteins such as sarcoendoplasmic reticulum Ca2+-ATPase (SERCA). In this review, we focus on the physiological significance of the links between Rap1 and Ca2+ signaling and emphasize the molecular interactions that may offer new targets for the therapy of Alzheimer’s disease, hypertension, and atherosclerosis, among other diseases.


SLEEP ◽  
2020 ◽  
Author(s):  
Mathieu E Wimmer ◽  
Rosa Cui ◽  
Jennifer M Blackwell ◽  
Ted Abel

Abstract The molecular and intracellular signaling processes that control sleep and wake states remain largely unknown. A consistent observation is that the cyclic adenosine monophosphate (AMP) response element-binding protein (CREB), an activity-dependent transcription factor, is differentially activated during sleep and wakefulness. CREB is phosphorylated by the cyclic AMP/protein kinase A (cAMP/PKA) signaling pathway as well as other kinases, and phosphorylated CREB promotes the transcription of target genes. Genetic studies in flies and mice suggest that CREB signaling influences sleep/wake states by promoting and stabilizing wakefulness. However, it remains unclear where in the brain CREB is required to drive wakefulness. In rats, CREB phosphorylation increases in the cerebral cortex during wakefulness and decreases during sleep, but it is not known if this change is functionally relevant to the maintenance of wakefulness. Here, we used the Cre/lox system to conditionally delete CREB in the forebrain (FB) and in the locus coeruleus (LC), two regions known to be important for the production of arousal and wakefulness. We used polysomnography to measure sleep/wake levels and sleep architecture in conditional CREB mutant mice and control littermates. We found that FB-specific deletion of CREB decreased wakefulness and increased non-rapid eye movement sleep. Mice lacking CREB in the FB were unable to sustain normal periods of wakefulness. On the other hand, deletion of CREB from LC neurons did not change sleep/wake levels or sleep/wake architecture. Taken together, these results suggest that CREB is required in neurons within the FB but not in the LC to promote and stabilize wakefulness.


2019 ◽  
Vol 20 (7) ◽  
pp. 1682
Author(s):  
Shujie Ning ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong ◽  
Yaoxing Chen

Previous studies have demonstrated that monochromatic light affects plasma melatonin (MEL) levels, which in turn regulates hepatic insulin-like growth factor I (IGF-I) secretion via the Mel1c receptor. However, the intracellular signaling pathway initiated by Mel1c remains unclear. In this study, newly hatched broilers, including intact, sham operation, and pinealectomy groups, were exposed to either white (WL), red (RL), green (GL), or blue (BL) light for 14 days. Experiments in vivo showed that GL significantly promoted plasma MEL formation, which was accompanied by an increase in the MEL receptor, Mel1c, as well as phosphorylated extracellular regulated protein kinases (p-ERK1/2), and IGF-I expression in the liver, compared to the other light-treated groups. In contrast, this GL stimulation was attenuated by pinealectomy. Exogenous MEL elevated the hepatocellular IGF-I level, which is consistent with increases in cyclic adenosine monophosphate (cAMP), Gαq, phosphorylated protein kinase C (p-PKC), and p-ERK1/2 expression. However, the Mel1c selective antagonist prazosin suppressed the MEL-induced expression of IGF-I, Gαq, p-PKC, and p-ERK1/2, while the cAMP concentration was barely affected. In addition, pretreatment with Ym254890 (a Gαq inhibitor), Go9863 (a PKC inhibitor), and PD98059 (an ERK1/2 inhibitor) markedly attenuated MEL-stimulated IGF-I expression and p-ERK1/2 activity. These results indicate that Mel1c mediates monochromatic GL-stimulated IGF-I synthesis through intracellular Gαq/PKC/ERK signaling.


Cephalalgia ◽  
2019 ◽  
Vol 39 (14) ◽  
pp. 1776-1788 ◽  
Author(s):  
Samaira Younis ◽  
Casper E Christensen ◽  
Nikolaj M Toft ◽  
Thomas Søborg ◽  
Faisal M Amin ◽  
...  

Objective Migraine displays clinical heterogeneity of attack features and attack triggers. The question is whether this heterogeneity is explained by distinct intracellular signaling pathways leading to attacks with distinct clinical features. One well-known migraine-inducing pathway is mediated by cyclic adenosine monophosphate and another by cyclic guanosine monophosphate. Calcitonin gene-related peptide triggers migraine via the cyclic adenosine monophosphate pathway and sildenafil via the cyclic guanosine monophosphate pathway. To date, no studies have examined whether migraine induction mediated via the cyclic adenosine monophosphate and cyclic guanosine monophosphate pathways yields similar attacks within the same patients. Methods Patients were subjected to migraine induction on two separate days using calcitonin gene-related peptide (1.5 µg/min for 20 minutes) and sildenafil (100 mg) in a double-blind, randomized, double-dummy, cross-over design. Data on headache intensity, characteristics and accompanying symptoms were collected until 24 hours after drug administration. Results Thirty-four patients were enrolled and 27 completed both study days. Seventeen patients developed migraine after both study drugs (63%; 95% CI: 42–81). Eight patients developed migraine on one day only (seven after sildenafil and one after calcitonin gene-related peptide). Two patients did not develop migraine on either day. Headache laterality, nausea, photophobia and phonophobia were similar between drugs in 77%, 65%, 100%, and 94%, respectively, of the 17 patients who developed attacks on both days. Conclusion A majority of patients developed migraine after both calcitonin gene-related peptide and sildenafil. This supports the hypothesis that the cyclic adenosine monophosphate and cyclic guanosine monophosphate intracellular signaling pathways in migraine induction converge in a common cellular determinator, which ultimately triggers the same attacks. Trial registration: ClinicalTrials.gov Identifier: NCT03143465.


Blood ◽  
2004 ◽  
Vol 103 (6) ◽  
pp. 2127-2134 ◽  
Author(s):  
Derek S. Sim ◽  
Glenn Merrill-Skoloff ◽  
Barbara C. Furie ◽  
Bruce Furie ◽  
Robert Flaumenhaft

Abstract Platelet accumulation at sites of vascular injury is the primary event in arterial thrombosis. Initial platelet accrual into thrombi is mediated by interactions of platelet adhesion receptors with ligands on the injured endothelium or in the sub-endothelial matrix. The role of intracellular signals in initial platelet accumulation at sites of endothelial injury, however, is the subject of debate. We have used a newly discovered inhibitor of phosphodiesterase 3A (PDE3A) and the well-characterized PDE3A inhibitor, cilostazol, to modulate 3′,5′-cyclic adenosine monophosphate (cAMP) levels in an in vivo model that enables the kinetic analysis of platelet accumulation. These studies demonstrate that elevation of basal cAMP levels results in an overall decline in platelet accumulation at the site of vascular injury. In particular, the initial rate of accumulation of platelets is inhibited by elevation of cAMP. Analysis of the kinetics of individual platelets at injury sites using intravital microscopy demonstrates that cAMP directs the rate at which platelets attach to and detach from thrombi. These studies demonstrate that cAMP in circulating platelets controls attachment to and detachment from sites of arteriolar injury. Thus, the status of the intracellular signaling machinery prior to engagement of platelet receptors influences the rate of platelet accumulation during thrombus formation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ward Vleeshouwers ◽  
Koen van den Dries ◽  
Sandra de Keijzer ◽  
Ben Joosten ◽  
Diane S. Lidke ◽  
...  

Prostaglandin E2 (PGE2) is a lipid mediator that modulates the function of myeloid immune cells such as macrophages and dendritic cells (DCs) through the activation of the G protein-coupled receptors EP2 and EP4. While both EP2 and EP4 signaling leads to an elevation of intracellular cyclic adenosine monophosphate (cAMP) levels through the stimulating Gαs protein, EP4 also couples to the inhibitory Gαi protein to decrease the production of cAMP. The receptor-specific contributions to downstream immune modulatory functions are still poorly defined. Here, we employed quantitative imaging methods to characterize the early EP2 and EP4 signaling events in myeloid cells and their contribution to the dissolution of adhesion structures called podosomes, which is a first and essential step in DC maturation. We first show that podosome loss in DCs is primarily mediated by EP4. Next, we demonstrate that EP2 and EP4 signaling leads to distinct cAMP production profiles, with EP4 inducing a transient cAMP response and EP2 inducing a sustained cAMP response only at high PGE2 levels. We further find that simultaneous EP2 and EP4 stimulation attenuates cAMP production, suggesting a reciprocal control of EP2 and EP4 signaling. Finally, we demonstrate that efficient signaling of both EP2 and EP4 relies on an intact microtubule network. Together, these results enhance our understanding of early EP2 and EP4 signaling in myeloid cells. Considering that modulation of PGE2 signaling is regarded as an important therapeutic possibility in anti-tumor immunotherapy, our findings may facilitate the development of efficient and specific immune modulators of PGE2 receptors.


2021 ◽  
Vol 118 (49) ◽  
pp. e2026668118
Author(s):  
Donghwa Kim ◽  
Alina Tokmakova ◽  
Lauren K. Lujan ◽  
Hannah R. Strzelinski ◽  
Nicholas Kim ◽  
...  

G protein–coupled receptors display multifunctional signaling, offering the potential for agonist structures to promote conformational selectivity for biased outputs. For β2-adrenergic receptors (β2AR), unbiased agonists stabilize conformation(s) that evoke coupling to Gαs (cyclic adenosine monophosphate [cAMP] production/human airway smooth muscle [HASM] cell relaxation) and β-arrestin engagement, the latter acting to quench Gαs signaling, contributing to receptor desensitization/tachyphylaxis. We screened a 40-million-compound scaffold ranking library, revealing unanticipated agonists with dihydroimidazolyl-butyl-cyclic urea scaffolds. The S-stereoisomer of compound C1 shows no detectable β-arrestin engagement/signaling by four methods. However, C1-S retained Gαs signaling—a divergence of the outputs favorable for treating asthma. Functional studies with two models confirmed the biasing: β2AR-mediated cAMP signaling underwent desensitization to the unbiased agonist albuterol but not to C1-S, and desensitization of HASM cell relaxation was observed with albuterol but not with C1-S. These HASM results indicate biologically pertinent biasing of C1-S, in the context of the relevant physiologic response, in the human cell type of interest. Thus, C1-S was apparently strongly biased away from β-arrestin, in contrast to albuterol and C5-S. C1-S structural modeling and simulations revealed binding differences compared with unbiased epinephrine at transmembrane (TM) segments 3,5,6,7 and ECL2. C1-S (R2 = cyclohexane) was repositioned in the pocket such that it lost a TM6 interaction and gained a TM7 interaction compared with the analogous unbiased C5-S (R2 = benzene group), which appears to contribute to C1-S biasing away from β-arrestin. Thus, an agnostic large chemical-space library identified agonists with receptor interactions that resulted in relevant signal splitting of β2AR actions favorable for treating obstructive lung disease.


2018 ◽  
Vol 23 (3) ◽  
pp. 207-216 ◽  
Author(s):  
Rosa M. Mella ◽  
Danel Kortazar ◽  
Meritxell Roura-Ferrer ◽  
Clarisa Salado ◽  
María Valcárcel ◽  
...  

Nomad Technology (Innoprot [Innovative Technologies in Biological Systems], Derio, Spain), a novel tool for multiplexing high-throughput cell-based G protein–coupled receptor (GPCR) assays, is described in this work. This new technology comprises a family of fluorescent biosensors called Nomad Biosensors that allow for the measurement of responses mediated by G proteins through their interactions with second-messenger transduction proteins. GPCRs are one of the largest protein families of receptors in eukaryotes, and their signaling mediates important physiological processes within cells. Thus, GPCRs are associated with a wide variety of diseases, and considered major targets in therapeutic research. Nomad constitutes a novel tool for unraveling the mechanism of GPCR signal transduction by simultaneously tracing different pathways. GPCR activation changes the structural folding of the biosensor and promotes its vesicularization, as well as an increase in the fluorescence intensity. Based on this technology, the MPXNomad cellular model was developed to discriminate between the Ca2+-mediated pathway and the cyclic adenosine monophosphate (cAMP)–mediated pathway. To validate this model, endothelin receptor B (ETBR) was coexpressed into the MPXNomad cell line and assessed with a specific agonist, an antagonist, and a chemical library of compounds. Nomad Technology optimizes the identification of novel GPCR ligands and enables the testing of large numbers of compounds.


Sign in / Sign up

Export Citation Format

Share Document