scholarly journals Mapping the Mitochondrial Regulation of Epigenetic Modifications in Association With Carcinogenic and Noncarcinogenic Polycyclic Aromatic Hydrocarbon Exposure

2020 ◽  
Vol 39 (5) ◽  
pp. 465-476
Author(s):  
Arpit Bhargava ◽  
Roshani Kumari ◽  
Surbhi Khare ◽  
Ruchita Shandilya ◽  
Pushpendra Kumar Gupta ◽  
...  

Polycyclic aromatic hydrocarbons (PAHs) refer to a ubiquitous group of anthropogenic air pollutants that are generated through incomplete carbon combustion. Although the immunotoxic nature of PAHs has been previously reported, the underlying molecular mechanisms of this effect are not fully understood. In the present study, we investigated the mitochondrial-mediated epigenetic regulation of 2 PAHs, carcinogenic (benzo[a]pyrene; BaP) and noncarcinogenic (anthracene [ANT]), in peripheral lymphocytes. While ANT exposure triggered mitochondrial oxidative damage, no appreciable epigenetic modifications were observed. On the other hand, exposure to BaP perturbed the mitochondrial redox machinery and initiated cascade of epigenetic modifications. Cells exposed to BaP showed prominent changes in the expression of mitochondrial microRNAs (miR-24, miR-34a, miR-150, and miR-155) and their respective gene targets (NF-κβ, MYC, and p53). The exposure of BaP also caused significant alterations in the expression of epigenetic modifiers (DNMT1, HDAC1, HDAC7, KDM3a, EZH2, and P300) and hypomethylation within nuclear and mitochondrial DNA. This further induced methylation of histone tails, which play a crucial role in the regulation of chromatin structure. Overall, our study provides novel mechanistic insights into the mitochondrial regulation of epigenetic modifications in association with PAH-induced immunotoxicity.

2020 ◽  
Vol 36 (10) ◽  
pp. 1158-1170
Author(s):  
Xun Wu ◽  
Wenxing Cui ◽  
Wei Guo ◽  
Haixiao Liu ◽  
Jianing Luo ◽  
...  

Abstract Clinical advances in the treatment of intracranial hemorrhage (ICH) are restricted by the incomplete understanding of the molecular mechanisms contributing to secondary brain injury. Acrolein is a highly active unsaturated aldehyde which has been implicated in many nervous system diseases. Our results indicated a significant increase in the level of acrolein after ICH in mouse brain. In primary neurons, acrolein induced an increase in mitochondrial fragmentation, loss of mitochondrial membrane potential, generation of reactive oxidative species, and release of mitochondrial cytochrome c. Mechanistically, acrolein facilitated the translocation of dynamin-related protein1 (Drp1) from the cytoplasm onto the mitochondrial membrane and led to excessive mitochondrial fission. Further studies found that treatment with hydralazine (an acrolein scavenger) significantly reversed Drp1 translocation and the morphological damage of mitochondria after ICH. In parallel, the neural apoptosis, brain edema, and neurological functional deficits induced by ICH were also remarkably alleviated. In conclusion, our results identify acrolein as an important contributor to the secondary brain injury following ICH. Meanwhile, we uncovered a novel mechanism by which Drp1-mediated mitochondrial oxidative damage is involved in acrolein-induced brain injury.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
June Seok Heo ◽  
Ja-Yun Lim ◽  
Sangshin Pyo ◽  
Dae Wui Yoon ◽  
Dongsook Lee ◽  
...  

The toxic effects of particulate matter have been linked to polycyclic aromatic hydrocarbons (PAHs) such as benzopyrene. PAHs are potent inducers of the aryl hydrocarbon receptor (AhR), which is an expressed nuclear receptor that senses environmental stimuli and modulates gene expression. Even though several studies have shown that the benzopyrene (BP) of chemical pollutants significantly impaired stem cell activity, the exact molecular mechanisms were not clearly elucidated. In the present study, we aimed to investigate the effects of BP on placenta-derived mesenchymal stem cells (PD-MSCs) in vitro. We found that the AhR in PD-MSCs was expressed under the treatment of BP, and its activation markedly disrupted osteogenic differentiation through the alteration of stemness activity of PD-MSCs. Moreover, BP treatment significantly reduced the proliferation activity of PD-MSCs and expression of pluripotent markers through the induction of AhR. Treatment with StemRegenin 1 (SR1), a purine derivative that antagonizes the AhR, effectively prevented BP-induced reduction of the proliferation and differentiation activity of PD-MSCs. In this study, we found that BP treatment in PD-MSCs markedly obstructs PD-MSC stemness through AhR signaling. Noteworthy, SR1-mediated MSC application will contribute to new perspectives on MSC-based therapies for air pollution-related bone diseases.


2009 ◽  
Vol 9 (17) ◽  
pp. 6479-6494 ◽  
Author(s):  
A. Zambrano García ◽  
C. Medina Coyotzin ◽  
A. Rojas Amaro ◽  
D. López Veneroni ◽  
L. Chang Martínez ◽  
...  

Abstract. Mezquital Valley (MV), a Mexican wastewater-based agricultural and industrial region, is a "hot spot" of regulated air pollutants emissions, but the concurrent unregulated ones, like hazardous metals and polycyclic aromatic hydrocarbons (PAH), remain undocumented. A biomonitoring survey with the epiphytic Tillandsia recurvata was conducted there to detect spatial patterns and potential sources of 20 airborne elements and 15 PAH. The natural δ13C and δ15N ratios of this plant helped in source identification. The regional mean concentration of most elements was two (Cr) to over 40 times (Ni, Pb, V) higher than reported for Tillandsia in other countries. Eleven elements, pyrene and chrysene had 18–214% higher mean concentration at the industrial south than at the agricultural north of MV. The total quantified PAH (mean, 572 ng g−1; range, 143–2568) were composed by medium (65%, phenanthrene to chrysene), low (28%, naphthalene to fluorene) and high molecular weight compounds (7%, Benzo(b)fluoranthene to indeno(1,2,3-cd)pyrene). The δ13C (mean, −14.6‰; range, −15.7‰ to −13.7‰) was consistently lower than −15‰ near the major petroleum combustion sources. The δ15N (mean, −3.0‰; range, −9.9‰ to 3.3‰) varied from positive at agriculture/industrial areas to negative at rural sites. Factor analysis provided a five-factor solution for 74% of the data variance: 1) crustal rocks, 39.5% (Al, Ba, Cu, Fe, Sr, Ti); 2) soils, 11.3%, contrasting contributions from natural (Mg, Mn, Zn) and saline agriculture soils (Na); 3) cement production and fossil fuel combustion, 9.8% (Ca, Ni, V, chrysene, pyrene); 4) probable agricultural biomass burning, 8.1% (K and benzo(g,h,i)perylene), and 5) agriculture with wastewater, 5.2% (δ15N and P). These results indicated high deposition of bioaccumulative air pollutants at MV, especially at the industrial area. Since T. recurvata reflected the regional differences in exposition, it is recommended as a biomonitor for comparisons within and among countries where it is distributed: southern USA to Argentina.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 827-827
Author(s):  
Hiroto Araki ◽  
Sudhakar Baluchamy ◽  
Benjamin Petro ◽  
Mirza Saqib Baig ◽  
Montha Suhangul ◽  
...  

Abstract Abstract 827 Epigenetic modifications are considered to be important in determining the fate of hematopoietic stem cells (HSC). We previously demonstrated that the sequential addition of the chromatin-modifying agents (CMA) 5-aza-2′-deoxycytidine (5azaD) and trichostatin A (TSA) expands transplantable HSC (Araki et al. Blood 2007, Exp Hematol 2009). Others have shown that valproic acid (VPA), an HDAC inhibitor, also expands HSC (DeFelice et al. Cancer Res 2005). We thus compared the efficacy of 5azaD/TSA and VPA in promoting the ex vivo expansion of human cord blood (CB) HSC. Cells were incubated with cytokines alone (SCF, Flt3 ligand, TPO and IL-3) or with cytokines and either 5azaD/TSA or VPA, resulting in 2.2-fold, 10.7-fold or 65-fold expansion, respectively, of primitive CD34+CD90+ cells after 9 days (n=3, Cytokine alone vs. VPA p=0.004; Cytokine alone vs. 5azaD/TSA p=0.03; VPA vs. 5azaD/TSA p=0.003). Interestingly, the 10.7-fold expansion of CD34+CD90+ cells following 5azaD/TSA treatment correlated with a 10- and 10.5-fold expansion of short-term colony-forming cells (CFC) and long-term cobblestone area-forming cells (CAFC), respectively. However, the 65-fold expansion of CD34+CD90+ cells achieved with VPA treatment yielded only a 25.6- and 8.4-fold expansion of CFC and CAFC, respectively. These results suggest a marked discordance between the phenotype and function of CD34+CD90+ cells when they are expanded in VPA, but not in 5azaD/TSA. Thus, we examined the in vivo hematopoietic repopulation potential of CMA-expanded CB HSC by quantitating SCID mouse repopulating cells (SRC) using limiting dilution assays. The frequency of SRC was 1 in 22,000 in primary CB cells (n=29 mice), 1 in 123,315, in (cytokine) controls (n=16 mice), 1 in 21,720 with VPA-treatment (n=27 mice), and 1 in 3,147, in 5azaD/TSA-treated CD34+CD90+ cell cultures (n=22 mice). Unlike control, treatment with VPA prevents loss of SRC but only results in SRC maintenance, whereas 5azaD/TSA treatment leads to a 7-fold expansion of SRC. Furthermore, serial transplantation of bone marrow (BM) from primary recipients engrafted with unmanipulated CB cells resulted in engraftment in 2 of 5 secondary mice, while BM from mice engrafted with VPA-treated cells failed to display secondary engraftment (n=5 mice), whereas BM from mice engrafted with 5azaD/TSA-treated cells resulted in engraftment in 5 of 6 secondary mice. Hence, we conclude that treatment of CB CD34+ cells with 5azaD/TSA or VPA results in distinct SRC outcomes-expansion or maintenance, respectively. To dissect the molecular mechanisms that may mediate these distinct SRC fates, we examined genes implicated in HSC self-renewal including HoxB4, Bmi1, STAT3, Ezh2 and PU.1. These gene transcript levels were increased in CD34+ cells treated with either 5azaD/TSA or VPA when compared to control cultures as measured by real time quantitative PCR. In accordance with these studies, CHIP assays using antibody against acetylated histone H4 indicate increased acetylation of the promoters of HoxB4 and Bmi1 genes in both VPA- and 5azaD/TSA-treated cells. In addition, higher levels of HoxB4, Ezh2 and PU.1 proteins were observed in VPA- and 5azaD/TSA-expanded cells, compared to control cultures. Since VPA treatment does not result in SRC expansion, these observations raise questions as to the importance of the upregulation of these genes for HSC expansion. Since the pharmacologic activity of CMAs is short (hours) we hypothesize that temporal effects, including early epigenetic modifications, lead to changes in transcription factor expression, which directly or indirectly promote symmetric or asymmetric divisions ultimately resulting in expansion or maintenance of HSC. Importantly, our global microarray data (n=3) using a human genome affymetrix chip (U133 plus 2.0) revealed a set of differentially expressed genes present in 5azaD/TSA- but not in VPA-expanded CD34+ cells, thus uncovering a potential molecular signature for HSC expansion. Currently, we are examining the molecular interactions of these signature genes and the effects of silencing of these genes on HSC expansion or maintenance which should allow us to begin to unravel the molecular mechanisms involved. In summary our data indicate that treatment of HSCs with different CMAs results in distinct fates: expansion or maintenance of HSC, an observation of potential therapeutic importance. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 28 (11) ◽  
pp. 1580-1589 ◽  
Author(s):  
Yuta Shimamoto ◽  
Sachiko Tamura ◽  
Hiroshi Masumoto ◽  
Kazuhiro Maeshima

Cells, as well as the nuclei inside them, experience significant mechanical stress in diverse biological processes, including contraction, migration, and adhesion. The structural stability of nuclei must therefore be maintained in order to protect genome integrity. Despite extensive knowledge on nuclear architecture and components, however, the underlying physical and molecular mechanisms remain largely unknown. We address this by subjecting isolated human cell nuclei to microneedle-based quantitative micromanipulation with a series of biochemical perturbations of the chromatin. We find that the mechanical rigidity of nuclei depends on the continuity of the nucleosomal fiber and interactions between nucleosomes. Disrupting these chromatin features by varying cation concentration, acetylating histone tails, or digesting linker DNA results in loss of nuclear rigidity. In contrast, the levels of key chromatin assembly factors, including cohesin, condensin II, and CTCF, and a major nuclear envelope protein, lamin, are unaffected. Together with in situ evidence using living cells and a simple mechanical model, our findings reveal a chromatin-based regulation of the nuclear mechanical response and provide insight into the significance of local and global chromatin structures, such as those associated with interdigitated or melted nucleosomal fibers.


2007 ◽  
Vol 41 (34) ◽  
pp. 7232-7240 ◽  
Author(s):  
Hsi-Hsien Yang ◽  
Shu-Mei Chien ◽  
Mei-Yu Lo ◽  
John Chi-Wei Lan ◽  
Wen-Chang Lu ◽  
...  

2017 ◽  
Vol 200 ◽  
pp. 413-427 ◽  
Author(s):  
Fobang Liu ◽  
Pascale S. J. Lakey ◽  
Thomas Berkemeier ◽  
Haijie Tong ◽  
Anna Theresa Kunert ◽  
...  

The allergenic potential of airborne proteins may be enhanced via post-translational modification induced by air pollutants like ozone (O3) and nitrogen dioxide (NO2). The molecular mechanisms and kinetics of the chemical modifications that enhance the allergenicity of proteins, however, are still not fully understood. Here, protein tyrosine nitration and oligomerization upon simultaneous exposure of O3 and NO2 were studied in coated-wall flow-tube and bulk solution experiments under varying atmospherically relevant conditions (5–200 ppb O3, 5–200 ppb NO2, 45–96% RH), using bovine serum albumin as a model protein. Generally, more tyrosine residues were found to react via the nitration pathway than via the oligomerization pathway. Depending on reaction conditions, oligomer mass fractions and nitration degrees were in the ranges of 2.5–25% and 0.5–7%, respectively. The experimental results were well reproduced by the kinetic multilayer model of aerosol surface and bulk chemistry (KM-SUB). The extent of nitration and oligomerization strongly depends on relative humidity (RH) due to moisture-induced phase transition of proteins, highlighting the importance of cloud processing conditions for accelerated protein chemistry. Dimeric and nitrated species were major products in the liquid phase, while protein oligomerization was observed to a greater extent for the solid and semi-solid phase states of proteins. Our results show that the rate of both processes was sensitive towards ambient ozone concentration, but rather insensitive towards different NO2 levels. An increase of tropospheric ozone concentrations in the Anthropocene may thus promote pro-allergic protein modifications and contribute to the observed increase of allergies over the past decades.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Namita Misra ◽  
Cécile Clavaud ◽  
Florent Guinot ◽  
Nasrine Bourokba ◽  
Stephanie Nouveau ◽  
...  

AbstractEnvironmental pollution is composed of several factors, namely particulate matter (PM2.5, PM10), ozone and Ultra Violet (UV) rays among others and first and the most exposed tissue to these substances is the skin epidermis. It has been established that several skin disorders such as eczema, acne, lentigines and wrinkles are aggravated by exposure to atmospheric pollution. While pollutants can interact with skin surface, contamination of deep skin by ultrafine particles or Polycyclic aromatic hydrocarbons (PAH) might be explained by their presence in blood and hair cortex. Molecular mechanisms leading to skin dysfunction due to pollution exposure have been poorly explored in humans. In addition to various host skin components, cutaneous microbiome is another target of these environment aggressors and can actively contribute to visible clinical manifestation such as wrinkles and aging. The present study aimed to investigate the association between pollution exposure, skin microbiota, metabolites and skin clinical signs in women from two cities with different pollution levels. Untargeted metabolomics and targeted proteins were analyzed from D-Squame samples from healthy women (n = 67 per city), aged 25–45 years and living for at least 15 years in the Chinese cities of Baoding (used as a model of polluted area) and Dalian (control area with lower level of pollution). Additional samples by swabs were collected from the cheeks from the same population and microbiome was analysed using bacterial 16S rRNA as well as fungal ITS1 amplicon sequencing and metagenomics analysis. The level of exposure to pollution was assessed individually by the analysis of polycyclic aromatic hydrocarbons (PAH) and their metabolites in hair samples collected from each participant. All the participants of the study were assessed for the skin clinical parameters (acne, wrinkles, pigmented spots etc.). Women from the two cities (polluted and less polluted) showed distinct metabolic profiles and alterations in skin microbiome. Profiling data from 350 identified metabolites, 143 microbes and 39 PAH served to characterize biochemical events that correlate with pollution exposure. Finally, using multiblock data analysis methods, we obtained a potential molecular map consisting of multi-omics signatures that correlated with the presence of skin pigmentation dysfunction in individuals living in a polluted environment. Overall, these signatures point towards macromolecular alterations by pollution that could manifest as clinical sign of early skin pigmentation and/or other imperfections.


Sign in / Sign up

Export Citation Format

Share Document