Influences of Unmodified and Carboxylated Carbon Nanotubes on Lipid Profiles in THP-1 Macrophages: A Lipidomics Study

2021 ◽  
pp. 109158182110566
Author(s):  
Lanjie Pei ◽  
Wenxiang Yang ◽  
Yi Cao

Since the possible roles of surface modifications in determining multi-walled carbon nanotube (MWCNT)–promoted endoplasmic reticulum (ER) stress-mediated lipid-laden macrophage foam cell formation are still in debate, we compared unmodified and carboxylated MWCNT-induced cytotoxicity, lipid profile changes, and expression of ER stress genes in THP-1 macrophages. Particularly, we focused on lipid profile changes by using lipidomics approaches. We found that unmodified and carboxylated MWCNTs significantly decreased cellular viability and appeared to damage the cellular membrane to a similar extent. Likewise, the results from Oil Red O staining showed that both types of MWCNTs slightly but significantly induced lipid accumulation. In keeping with Oil Red O staining results, lipidomics data showed that both types of MWCNTs up-regulated most of the lipid classes. Interestingly, almost all lipid classes were relatively higher in carboxylated MWCNT-exposed THP-1 macrophages compared with unmodified MWCNT-exposed cells, indicating that carboxylated MWCNTs more effectively changed lipid profiles. But in contrast to our expectation, none of the MWCNTs significantly induced the expression of ER stress genes. Even, compared with carboxylated MWCNTs, unmodified MWCNTs induced higher expression of lipid genes, including macrophage scavenger receptor 1 and fatty acid synthase. Combined, our results suggested that even though carboxylation did not significantly affect MWCNT-induced lipid accumulation, carboxylated MWCNTs were more potent to alter lipid profiles in THP-1 macrophages, indicating the need to use omics techniques to understand the exact nanotoxicological effects of MWCNTs. However, the differential effects of unmodified and carboxylated MWCNTs on lipid profiles might not be related with the induction of ER stress.

2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Jun Liu ◽  
Tao Tang ◽  
Guo-Dong Wang ◽  
Bo Liu

Abstract Background: As one of the most common liver disorders worldwide, non-alcoholic fatty liver disease (NAFLD) begins with the abnormal accumulation of triglyceride (TG) in the liver. Long non-coding RNA-H19 was reported to modulate hepatic metabolic homeostasis in NAFLD. However, its molecular mechanism of NAFLD was not fully clear. Methods: In vitro and in vivo models of NAFLD were established by free fatty acid (FFA) treatment of hepatocytes and high-fat feeding mice, respectively. Hematoxylin and Eosin (H&E) and Oil-Red O staining detected liver tissue morphology and lipid accumulation. Immunohistochemistry (IHC) staining examined peroxisome proliferator-activated receptor γ (PPARγ) level in liver tissues. ELISA assay assessed TG secretion. Luciferase assay and RNA pull down were used to validate regulatory mechanism among H19, miR-130a and PPARγ. The gene expression in hepatocytes and liver tissues was detected by quantitative real-time PCR (qRT-PCR) and Western blotting. Results: H19 and PPARγ were up-regulated, while miR-130a was down-regulated in NAFLD mouse and cellular model. H&E and Oil-Red O staining indicated an increased lipid accumulation. Knockdown of H19 inhibited steatosis and TG secretion in FFA-induced hepatocytes. H19 could bind to miR-130a, and miR-130a could directly inhibit PPARγ expression. Meanwhile, miR-130a inhibited lipid accumulation by down-regulating NAFLD-related genes PPARγ, SREBP1, SCD1, ACC1 and FASN. Overexpression of miR-130a and PPARγ antagonist GW9662 inhibited lipogenesis and TG secretion, and PPARγ agonist GW1929 reversed this change induced by miR-130a up-regulation. Conclusion: Knockdown of H19 alleviated hepatic lipogenesis via directly regulating miR-130a/PPARγ axis, which is a novel mechanistic role of H19 in the regulation of NAFLD.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 791-791
Author(s):  
Hayoung Woo ◽  
Jung Eun Park ◽  
Youn-Soo Cha

Abstract Objectives Doenjang, the Korean traditional fermented soybean paste, contains much salt. There is a concern that cardiovascular disease may occur due to such high salinity. Nevertheless, previous studies have demonstrated functional properties of doenjang anti-obesity and anti-cancer effects. Furthermore, in our recent studies, we showed that the anti-hypertensive effect of doenjang through renin-angiotensin system (RAS) regulation. Doenjang regulated the RAS to improve lipid metabolism in adipose tissue, which had a positive effect on blood pressure control. Therefore, we expected to find the exact mechanism of action or target point of doenjang in adipocyte using 3T3-L1 cells. Methods In this study, 3T3-L1 cells were treated with doenjang and RAS blockers, Losartan (10−4 M), and Captopril (10−4 M), were treated as positive control which suppresses AT1R and ACE, respectively. Non-cytotoxic concentrations of samples were selected as per MTT assay and added with induction media, harvested after 4 days for RNA extraction. Lipid droplets were detected by Oil Red O staining. Results Doenjang downregulated mRNA levels of peroxisome proliferator-activated receptor-γ (Pparg), RAS related genes such as angiotensinogen (Agt), Renin (Ren), and aldosterone-releasing factors (P < 0.05). Especially, angiotensin convert enzyme (Ace) and angiotensin II receptor 2 (Agtr2) levels were decreased by doenjang treatment. Doenjang reduced the lipid accumulation, which was confirmed from the Oil Red O staining of lipid droplets. As a result, it is revealed that doenjang not only inhibits lipid accumulation in adipocytes but also may inhibit ACE in 3T3-L1 adipocytes through a mechanism similar to the effect of Captopril. Conclusions These data are consistent with our animal study. It have been shown to regulate blood pressure through lipid improvement and ACE inhibition despite high salt content in doenjang. Funding Sources This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. 2018R1A2B6006477).


2020 ◽  
Author(s):  
Xue-Mei Wang ◽  
Xiao-Ming Gao ◽  
Fen Liu ◽  
Ying Cao ◽  
Jie-Ying Wang ◽  
...  

Abstract Background and aims: Lipid accumulation of macrophages caused by oxidative stress is the key reason for the early pathological changes of atherosclerosis. LncRNA H19 repression downregulated NF-κB activation, upregulated ABCA1 expression, intracellular lipid accumulation increased, but the role of lncRNA H19 in atherogenesis and the molecular mechanisms have not been defined. We aimed to explore if and how lncRNA H19 affects lipid accumulation of macrophages by regulating lipid metabolism and inflammatory response.Methods and results: THP-1 macrophages were cultured with ox-LDL to form foam cells. THP-1-derived macrophages were incubated with H19 siRNA or not. Oil Red O staining was used for the determination lipid accumulation in macrophages. Enzymatic methods were performed to analyze cholesterol concentration. Both western blot and qRT-PCR were applied to detect target gene expression. ELISA was used to examine the levels of oxidative and inflammatory mediators. We found that lncRNA H19 repression reduced lipid accumulation by elevating efficiency of RCT and via upregulation of ABCA1 and PPARα expression in THP-1 derived macrophages. Further, lncRNA H19 repression upregulated PGC-1α and downregulated NF-κB signaling pathway.Conclusion: These results suggest that lncRNA H19 repression inhibits atherosclerosis by promoting RCT process and reducing inflammatory response via PGC-1α and NF-κB pathways, respectively.


2010 ◽  
Vol 62 (5) ◽  
pp. 473-481 ◽  
Author(s):  
Suowen Xu ◽  
Yan Huang ◽  
Yu Xie ◽  
Tian Lan ◽  
Kang Le ◽  
...  

2017 ◽  
Vol 42 (3) ◽  
pp. 1165-1176 ◽  
Author(s):  
Jicui Chen ◽  
Huichen Zhao ◽  
Xiaoli Ma ◽  
Yuchao Zhang ◽  
Sumei Lu ◽  
...  

Background/Aims: The aim of this study was to determine the direct role of liraglutide (LG) in adipogenesis and lipid metabolism. Methods: Lipid accumulation was evaluated by oil red O staining, quantitative real-time PCR (qPCR) was performed to determine glucagon-like peptide 1 receptor (GLP-1R), fatty acid synthase (FASN) and adipose triglyceride lipase (ATGL) expression in 3T3-L1 preadipocytes, differentiated adipocytes and in adipose tissues from mice. The effects of LG on 3T3-L1 adipogenesis and lipid metabolism were analyzed with qPCR, Western Blotting, oil red O staining, immunohistochemistry (IHC) and immunofluorescence (IF). All measurements were performed at least three times. Results: LG increased the expression of differentiation marker genes and lipid accumulation during preadipocyte differentiation. In differentiated adipocytes, LG decreased FASN expression, and simultaneously led to CREB phosphorylation and ERK1/2 activation which were abolished by a GLP-1R antagonist, exendin (9-39). LG induced-FASN down-regulation was partially reversed by PKA and ERK1/2 inhibitors. Consistent with above in vitro findings, LG treatment significantly reduced FASN expression in visceral adipose tissues of ob/ob mice, and reduced body weight gain. Conclusion: LG promotes preadipocytes differentiation, and inhibits FASN expression in adipocytes. LG induced down-regulation of FASN is at least partially mediated by PKA and MAPK signaling pathways.


2004 ◽  
Vol 48 (10) ◽  
pp. 3655-3661 ◽  
Author(s):  
Liisa Törmäkangas ◽  
Hannu Alakärppä ◽  
Denise Bem David ◽  
Maija Leinonen ◽  
Pekka Saikku

ABSTRACT Chronic Chlamydia pneumoniae infections have been associated with atherosclerosis, but clear knowledge about how these infections should be treated is lacking. We studied the effect of a new ketolide antibiotic, telithromycin, on chronic C. pneumoniae lung infection. Female C57BL/6J mice on a 0.2% cholesterol diet were inoculated intranasally with C. pneumoniae either two or three times every fourth week. Telithromycin was given to the mice subcutaneously at 75 mg/kg of body weight once daily for 5 or 10 days, starting at 3 days after the last inoculation. Samples were taken at 4 and 12 weeks after the last inoculation. The presence of C. pneumoniae DNA in lung tissue was demonstrated by PCR and the detection of lipid accumulation in the aortic sinus by Oil-Red-O staining. C. pneumoniae DNA positivity and inflammatory reactions in the lung tissue of the mice inoculated twice were significantly affected by treatment after both inoculations or only after the second inoculation at 12 weeks. Intimal lipid accumulation in the aortic sinus was also slightly but significantly less abundant in the mice treated after both inoculations compared to the levels in those treated only after the second inoculation for 10 days (geometric means, 823 and 4,324 μm2, respectively; P = 0.033). No differences between the infected, untreated controls and the group inoculated three times and treated for 5 days were seen. We conclude that telithromycin is effective in preventing the development of chronic C. pneumoniae infection and intimal lipid accumulation in C56BL/6J mice when the treatment is given after each inoculation.


2019 ◽  
Vol 8 (12) ◽  
pp. 2035 ◽  
Author(s):  
Sabrina Pagano ◽  
Alessandra Magenta ◽  
Marco D’Agostino ◽  
Francesco Martino ◽  
Francesco Barillà ◽  
...  

Aims: Anti-Apolipoprotein A-1 autoantibodies (anti-ApoA-1 IgG) promote atherogenesis via innate immune receptors, and may impair cellular cholesterol homeostasis (CH). We explored the presence of anti-ApoA-1 IgG in children (5–15 years old) with or without familial hypercholesterolemia (FH), analyzing their association with lipid profiles, and studied their in vitro effects on foam cell formation, gene regulation, and their functional impact on cholesterol passive diffusion (PD). Methods: Anti-ApoA-1 IgG and lipid profiles were measured on 29 FH and 25 healthy children. The impact of anti-ApoA-1 IgG on key CH regulators (SREBP2, HMGCR, LDL-R, ABCA1, and miR-33a) and foam cell formation detected by Oil Red O staining were assessed using human monocyte-derived macrophages. PD experiments were performed using a validated THP-1 macrophage model. Results: Prevalence of high anti-ApoA-1 IgG levels (seropositivity) was about 38% in both study groups. FH children seropositive for anti-ApoA-1 IgG had significant lower total cholesterol LDL and miR-33a levels than those who were seronegative. On macrophages, anti-ApoA-1 IgG induced foam cell formation in a toll-like receptor (TLR) 2/4-dependent manner, accompanied by NF-kB- and AP1-dependent increases of SREBP-2, LDL-R, and HMGCR. Despite increased ABCA1 and decreased mature miR-33a expression, the increased ACAT activity decreased membrane free cholesterol, functionally culminating to PD inhibition. Conclusions: Anti-ApoA-1 IgG seropositivity is frequent in children, unrelated to FH, and paradoxically associated with a favorable lipid profile. In vitro, anti-ApoA-1 IgG induced foam cell formation through a complex interplay between innate immune receptors and key cholesterol homeostasis regulators, functionally impairing the PD cholesterol efflux capacity of macrophages.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xinxin Zhang ◽  
Yating Qin ◽  
Xiaoning Wan ◽  
Hao Liu ◽  
Chao Lv ◽  
...  

Abstract Background Atherosclerosis is a chronic vascular disease posing a great threat to public health. We investigated whether rosuvastatin (RVS) enhanced autophagic activities to inhibit lipid accumulation and polarization conversion of macrophages and then attenuate atherosclerotic lesions. Methods All male Apolipoprotein E-deficient (ApoE−/−) mice were fed high-fat diet supplemented with RVS (10 mg/kg/day) or the same volume of normal saline gavage for 20 weeks. The burden of plaques in mice were determined by histopathological staining. Biochemical kits were used to examine the levels of lipid profiles and inflammatory cytokines. The potential mechanisms by which RVS mediated atherosclerosis were explored by western blot, real-time PCR assay, and immunofluorescence staining in mice and RAW264.7 macrophages. Results Our data showed that RVS treatment reduced plaque areas in the aorta inner surface and the aortic sinus of ApoE−/− mice with high-fat diet. RVS markedly improved lipid profiles and reduced contents of inflammatory cytokines in the circulation. Then, results of Western blot showed that RVS increased the ratio LC3II/I and level of Beclin 1 and decreased the expression of p62 in aortic tissues, which might be attributed to suppression of PI3K/Akt/mTOR pathway, hinting that autophagy cascades were activated by RVS. Moreover, RVS raised the contents of ABCA1, ABCG1, Arg-1, CD206 and reduced iNOS expression of arterial wall, indicating that RVS promoted cholesterol efflux and M2 macrophage polarization. Similarly, we observed that RVS decreased lipids contents and inflammatory factors expressions in RAW264.7 cells stimulated by ox-LDL, accompanied by levels elevation of ABCA1, ABCG1, Arg-1, CD206 and content reduction of iNOS. These anti-atherosclerotic effects of RVS were abolished by 3-methyladenine intervention. Moreover, RVS could reverse the impaired autophagy flux in macrophages insulted by chloroquine. We further found that PI3K inhibitor LY294002 enhanced and agonist 740 Y-P weakened the autophagy-promoting roles of RVS, respectively. Conclusions Our study indicated that RVS exhibits atheroprotective effects involving regulation lipid accumulation and polarization conversion by improving autophagy initiation and development via suppressing PI3K/Akt/mTOR axis and enhancing autophagic flux in macrophages.


2021 ◽  
Author(s):  
Xinxin Zhang ◽  
Yating Qin ◽  
Xiaoning Wan ◽  
Hao Liu ◽  
Chao Lv ◽  
...  

Abstract Background Atherosclerosis is a chronic vascular disease posing a great threat to public health. We investigated whether rosuvastatin (RVS) enhanced autophagic activities to inhibit lipid accumulation and polarization conversion of macrophages and then attenuate atherosclerotic lesions. Methods All male Apolipoprotein E-deficient (ApoE-/-) mice were fed high-fat diet supplemented with RVS (10mg/kg/day) or the same volume of normal saline gavage for 20 weeks. The burden of plaques in mice were determined by histopathological staining. Biochemical kits were used to examine the levels of lipid profiles and inflammatory cytokines. The potential mechanisms by which RVS mediated atherosclerosis were explored by western blot, real-time PCR assay, and immunofluorescence staining in mice and RAW264.7 macrophages.Results Our data showed that RVS treatment reduced plaque areas in the aorta inner surface and the aortic sinus of ApoE-/- mice with high-fat diet. RVS markedly improved lipid profiles and reduced contents of inflammatory cytokines in the circulation. Then, results of Western blot showed that RVS increased the ratio LC3II/I and level of Beclin 1 and decreased the expression of p62 in aortic tissues, which might be attributed to suppression of PI3K/Akt/mTOR pathway, hinting that autophagy cascades were activated by RVS. Moreover, RVS raised the contents of ABCA1, ABCG1, Arg-1, CD206 and reduced iNOS expression of arterial wall, indicating that RVS promoted cholesterol efflux and M2 macrophage polarization. Similarly, we observed that RVS decreased lipids contents and inflammatory factors expressions in RAW264.7 cells stimulated by ox-LDL, accompanied by levels elevation of ABCA1, ABCG1, Arg-1, CD206 and content reduction of iNOS. These anti-atherosclerotic effects of RVS were abolished by 3-methyladenine intervention. Moreover, RVS could reverse the impaired autophagy flux in macrophages insulted by chloroquine. We further found that PI3K inhibitor LY294002 enhanced and agonist 740 Y-P weakened the autophagy-promoting roles of RVS, respectively. Conclusions Our study indicated that RVS exhibits atheroprotective effects involving regulation lipid accumulation and polarization conversion by improving autophagy initiation and development via suppressing PI3K/Akt/mTOR axis and enhancing autophagic flux in macrophages.


2021 ◽  
Vol 11 (16) ◽  
pp. 7679
Author(s):  
Jae Min Hwang ◽  
Mun-Hoe Lee ◽  
Jin-Hee Lee ◽  
Jong Hun Lee

Agastache rugosa, or Korean mint, is an herb used as a spice, food additive and traditional medicinal ingredient. It has desirable effects, such as its antibacterial, antifungal and antioxidant properties. A. rugosa contains many phenolic compounds studied for their various health benefits, with the primary components being tilianin. A. rugosa extract (ARE), which was extracted with ethanol and freeze-dried, contained 21.14 ± 0.15 mg/g of tilianin with a total polyphenol content of 38.11 ± 0.88 mg/g. Next, the antiadipogenic effect of A. rugosa and tilianin was clarified using 3T3-L1 cells, which differentiate into adipocytes and develop lipid droplets. 3T3-L1 cells were treated with ARE or tilianin and lipid accumulation (%) was calculated through oil red O staining. Tilianin elicited dose-dependent decrease in lipid accumulation (% of positive control) (30 μM 92.10 ± 1.19%; 50 μM 69.25 ± 1.78%; 70 μM 54.86 ± 1.76%; non-differentiation 18.10 ± 0.32%), assessed by oil-red-O staining, whereas ARE treatments caused consistent diminution in lipid accumulation regardless of dose (100 μM 86.90 ± 4.97%; 200 μM 87.25 ± 4.34%; 400 μM 88.54 ± 2.27%; non-differentiation 17.96 ± 1.30%), indicating that both compounds have anti-obesity effects on adipocytes. Treatment with ARE lowered the mRNA (PPARγ; C/EBPα; FABP4; SREBP1; ACC; FAS) and protein (PPARγ; C/EBPα; SREBP1) levels of adipogenesis and lipogenesis-related factors. Tilianin showed a greater effect on the mRNA levels compared with ARE. Thus, tilianin and ARE may have anti-adipogenic and anti-lipogenic effects on 3T3-L1 cells and be possible candidates of obesity-related supplements.


Sign in / Sign up

Export Citation Format

Share Document