A combined experimental-numerical analysis of a novel deformable sandwich structure for morphing wing applications

2020 ◽  
pp. 109963622097931
Author(s):  
Amin Hajarian ◽  
Mohammad Reza Zakerzadeh ◽  
Hamid Salehi ◽  
Mostafa Baghani

In this paper, a new flexible sandwich structure is introduced, which can be employed in morphing aircrafts capable of intelligently changing their shape in different flight conditions. To accomplish this goal, first, a review of the various ideas in the literature is presented. In the following, features of the proposed structure and its differences from other ideas are expressed. Then, the process of fabrication and the various stages of shaping the structure are described. In an aircraft with variable wings camber, the deformable section can be assumed to be a cantilever beam. Thus, samples of the proposed structure are fabricated as the cantilever beam and are tested as tip-loaded beams. Since the numerical analysis of the new structure involves the recognition of the mechanical behavior of its components, a comprehensive review of the mechanical behavior of each component of the structure is performed. Afterwards, the numerical method is utilized to model samples of the structure, and the changes in the samples’ deformation are examined under different loads. According to the observation of the broken samples, to arrive at more accurate numerical results, a distribution for the cavities, caused by the manufacturing process, is considered. Finally, with the same assumptions, another sample is analyzed, and it is shown that the results of the second model are consistent with experimental results.

Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


2014 ◽  
Vol 580-583 ◽  
pp. 2134-2140
Author(s):  
Jian Zhang ◽  
Jian Feng Zhai ◽  
Xian Mei Wang ◽  
Jie Chen

Two-Dimensional finite element analysis was used to investigate the performance of seawall construction over weak subgrade soil using artificial base layer material consisted of cemented sand cushion comprising geosynthetics materials. Two types of base layer materials pure sand and cemented sand comprising husk rich ash and two types of geosynthetics materials geogrid and geotextile were used. Constitutive models were used to represent different materials in numerical analysis. The competence of two-dimensional numerical analysis was compared with experimental results. Numerical results showed a superior harmony with the experimental results. Finite element analysis model proved to be a great tool to determine the parameters that are difficult to measure in laboratory experiments. In addition, finite element analysis has the benefit of cost and time saving when compared to experimental investigation work. Numerical results showed strain induced in geosynthetics eliminated beyond a distance approximately equal six times of footing width.


2021 ◽  
Vol 13 (1) ◽  
pp. 183-191
Author(s):  
Adriana STEFAN ◽  
George PELIN ◽  
Cristina-Elisabeta PELIN ◽  
Alexandra-Raluca PETRE ◽  
Monica MARIN

The complexity of sandwich structures is a challenge for aeronautics designers. Sandwich construction is widely used in both the aerospace and commercial industries because it is an extremely lightweight structural approach with high rigidity and strength/weight ratios. Although today's technology offers the possibility to combine a variety of materials for these structure solutions, in aviation only a few materials are accepted. This paper presents the technological process of making these sandwich structures, as well as a study of the characterization and testing of a sandwich structure to analyze the behavior from a mechanical point of view. The conclusions of the paper represent an experimental basis on which further research will be built.


Author(s):  
Carlo Boursier Niutta ◽  
Raffaele Ciardiello ◽  
Giovanni Belingardi ◽  
Alessandro Scattina

In this work, the mechanical properties of two different adhesives compositions have been investigated both experimentally and numerically. The studied thermoplastic adhesives are Hot-Melt Adhesive (HMA). In particular, a pristine and a nanomodified adhesive with 10% in weight of iron oxide have been considered. The adhesives have been subjected to a series of single lap joint (SLJ) tests using adherends made of polypropylene copolymer. As it is well-known, the structural-mechanical behavior of adhesive joints is mostly influenced by the bonding process: thickness of adhesive as well as its application procedures and the surface preparation of adherends are among the most influencing factors. In addition, the mechanical behavior of SLJ test is particularly influenced by the correct alignment of adherends and applied load. These aspects have been investigated, analyzing the experimental results. Moreover, the experimental results have been used to develop a numerical model of the two adhesives. The numerical analysis has been carried out using the commercial software LS-DYNA. Transient nonlinear finite element analysis has been performed to simulate the mechanical behavior of the thermoplastic adhesives. In particular, the cohesive formulations of the elements have been taken into consideration after a careful literature review. In order to set-up and to validate the mechanical properties of the adhesives, the experimental SLJ tests have been simulated. The developed finite element models enable to investigate more complex joint structures where these types of adhesives are used, such as plastic piping systems and automotive applications. Further, the numerical models allow to investigate with higher accuracy and lower time different aspects such as manufacturing and non-linear effects.


1991 ◽  
Vol 113 (4) ◽  
pp. 241-249 ◽  
Author(s):  
C. Jolicoeur ◽  
A. Cardou

Several mathematical models are currently available to predict the mechanical behavior of twisted wire cables and ACSR electrical conductors subjected to axisymmetric loads. The equations for each model are presented in a standardized form in the linear case and the differences illustrated are shown. Numerical results obtained with each model are presented in tabular form and a comparison made with experimental results reported in the literature.


2013 ◽  
Vol 281 ◽  
pp. 639-644 ◽  
Author(s):  
V.N. Alekhin ◽  
A.A. Antipin ◽  
S.N. Gorodilov

In the paper the wind loads on 52 flore building "Iset Tower" are investigated. Distribution of pressure to the building and velocities are presented. Performed calculations show qualitative agreement with experimental results. According to the results of numerical simulation of wind effects it can be concluded that both aerodynamic experiments and numerical analysis are needed in the design. If there is coincidence of experimental and numerical results then they can be used to calculate the skeleton of the building.


2014 ◽  
Vol 578-579 ◽  
pp. 505-508
Author(s):  
Shao Qin Zhang ◽  
Lei Wu

In the present paper, we investigate the effect of a padding-plate on the behavior of extended end-plate semi-rigid connections. The numerical simulations were carried out for a standard extended end-plate connection joint without padding-plate and two connection joints with 4mm and 6mm thick padding-plates. The existing experimental results verified the validity of the numerical model. The numerical results have shown that a thin padding-plate will more or less decline the carrying load capacity of the connection joint but greatly improve the connect ductility. Filling a thin padding-plate in the end-plate connection is feasible and brings the forewarning function.


2019 ◽  
Vol 22 (2) ◽  
pp. 88-93
Author(s):  
Hamed Khanger Mina ◽  
Waleed K. Al-Ashtrai

This paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results showed that the two beams vibrate independently when the bolts were loosed and the structure stiffness is about 20 N/m and the damping ratio is about 0.008. With increasing the bolts tightening, the stiffness and the damping ratio of the structure were also increased till they reach their maximum values when the tightening force equals to 8330 N, where the structure now has stiffness equals to 88 N/m and the damping ratio is about 0.062. Beyond this force value, increasing the bolts tightening has no effect on stiffness of the structure while the damping ratio is decreased until it returned to 0.008 when the bolts tightening becomes immense and the beams behave as one beam of double thickness.


1981 ◽  
Vol 46 (8) ◽  
pp. 1709-1721 ◽  
Author(s):  
Miloš Smutek ◽  
Arnošt Zukal

A numerical method, based on the integral equation of the adsorption on energy heterogeneous surfaces, is suggested for the evaluation of overall isotherm. It is shown that for the distribution of adsorption energies given by Eq. (1.11) and different models of the adsorption behaviour, the overall isotherms obey approximately the Dubinin-Radushkevich equation. The strong energy heterogeneity smears effectively the differences between the localized and mobile adsorption and leads to the same character of the overall isotherm with only a slightly changed heterogeneity parameter.


Sign in / Sign up

Export Citation Format

Share Document