Investigation of the thermal property and tribological behavior of CaSO4 whisker-modified paper-based composite friction materials

Author(s):  
Xiang Zhang ◽  
Ke-Zhi Li ◽  
He-Jun Li ◽  
Ye-Wei Fu

In this study, CaSO4 whisker was applied to the paper-based composite friction material as the friction layer (secondary layer) by the paper-making process. The tribological and thermal properties were analyzed. Three-dimensional surface profiles were observed to discuss the wear mechanism. The results showed that the samples with higher CaSO4 whisker contents owned better thermal resistance. The sample with 4% CaSO4 whisker content had the highest dynamic friction coefficient. As the CaSO4 whisker content increased from 0% to 16%, the wear rate decreased first and then increased, and the sample with 8% CaSO4 whisker content had the highest wear resistance.

2020 ◽  
Vol 21 (6) ◽  
pp. 613
Author(s):  
Amira Sellami ◽  
Nesrine Hentati ◽  
Mohamed Kchaou ◽  
Mohammad Asaduzzaman Chowdhury ◽  
Riadh Elleuch

Friction materials are composed of numerous ingredients which differ from nature and particles size. Each ingredient has its own impact on the mechanical and tribological behavior of the material. Brass ingredients have a great impact on the thermal gradient dissipation in the sliding contact between disc and brake pad material. In this research, the influence of different sizes and forms of brass ingredient was studied on the friction material behavior. The physical (density), mechanical (yield strength, young module) and thermal (thermal conductivity and specific heat) properties of the considered composites were characterized. Results proves that only physical and mechanical properties are sensitive to the changes in size and form of brass particles. The tribological behavior of the brake friction materials was also assessed using a pin-on-disc tribometer. The results show that bigger brass particles and their elongated shape allows it to be well embedded on the pad surface during braking application, and thus decreased wear rate . In contrast, the smaller particle decrease the friction stability and it rounded shape increase wear of the material since it tearing from the surface by abrasive wear.


Friction ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 92-103 ◽  
Author(s):  
Yewei Fu ◽  
Le Zhou ◽  
Tao Yin ◽  
Zhongyao Luo ◽  
Hejin Li ◽  
...  

AbstractAs an alternative to short fibers, non-woven fabrics (NWFs) were made using different types of long fibers to optimize the performance of paper-based friction materials and their technology. In this investigation, the fillers and resin were impregnated into these NWFs to prepare three kinds of wet friction material. The tribological, mechanical, and thermal properties of the new wet friction material were studied. The results indicate that the dynamic friction coefficient of the new friction material is approximately 0.12 and the static friction coefficient is approximately 0.15; the better wear rate is 0.81334 × 10-14 m3·(N·m)-1. In addition, the temperature for 10% mass loss yielded 100 °C enhancement and the tensile strength was improved by 200%, compared to previously reported values. Most importantly, the advantages include a simple preparation flow, low cost, and resource conservation. This is a promising approach for the future development of paper-based friction materials.


Author(s):  
Kingsford Koranteng ◽  
Heyan Li ◽  
Biao Ma ◽  
Chengnan Ma

Studies have shown that reinforced paper-based friction material with 600 µm carbon fiber length possesses a high dynamic friction coefficient but is subjected to abrasive wear during sliding contact. This work is devoted to further investigate the effect of operating variables on this friction material subjected to high operating conditions. A pin-on-disc test was carried out to determine the tribological behavior of this friction material sliding against 65Mn steel. The friction and wear rate results from measurements were discussed. The highest friction value of about 0.3 was obtained by varying the applied load at 120 N while the lowest friction value close to 0.02 was obtained when the sliding speed was 0.026 m/s. Increasing the sliding speed above 0.30 m/s caused constant temperature (175 °C) to fluctuate due to high friction heat generation on the sliding surface. The highest wear rate was 1.42 × 10−15m3/Nm by varying the sliding speed at 1.31 m/s. In contrast, the lowest wear rate was 2.1 × 10−16m3/Nm when the temperature was at 400 °C.


Author(s):  
Kang Liu ◽  
Titan C. Paul ◽  
Leo A. Carrilho ◽  
Jamil A. Khan

The experimental investigations were carried out of a pressurized water nuclear reactor (PWR) with enhanced surface using different concentration (0.5 and 2.0 vol%) of ZnO/DI-water based nanofluids as a coolant. The experimental setup consisted of a flow loop with a nuclear fuel rod section that was heated by electrical current. The fuel rod surfaces were termed as two-dimensional surface roughness (square transverse ribbed surface) and three-dimensional surface roughness (diamond shaped blocks). The variation in temperature of nuclear fuel rod was measured along the length of a specified section. Heat transfer coefficient was calculated by measuring heat flux and temperature differences between surface and bulk fluid. The experimental results of nanofluids were compared with the coolant as a DI-water data. The maximum heat transfer coefficient enhancement was achieved 33% at Re = 1.15 × 105 for fuel rod with three-dimensional surface roughness using 2.0 vol% nanofluids compared to DI-water.


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
Gianluca Costagliola ◽  
Tobias Brink ◽  
Julie Richard ◽  
Christian Leppin ◽  
Aude Despois ◽  
...  

AbstractWe report experimental measurements of friction between an aluminum alloy sliding over steel with various lubricant densities. Using the topography scans of the surfaces as input, we calculate the real contact area using the boundary element method and the dynamic friction coefficient by means of a simple mechanistic model. Partial lubrication of the surfaces is accounted for by a random deposition model of oil droplets. Our approach reproduces the qualitative trends of a decrease of the macroscopic friction coefficient with applied pressure, due to a larger fraction of the micro-contacts being lubricated for larger loads. This approach relates direct measurements of surface topography to realistic distributions of lubricant, suggesting possible model extensions towards quantitative predictions.


Sign in / Sign up

Export Citation Format

Share Document