Numerical analysis on the start behavior of rough journal bearings during the gear pump meshing cycle

Author(s):  
Jiaxing Zhu ◽  
Huacong Li ◽  
Jiangfeng Fu ◽  
Xianwei Liu ◽  
Shang Wang

In this paper, the transient lubrication characteristics of hydrodynamic journal bearings during the external gear pump meshing cycle are studied. In the bearings lubrication calculation part, a numerical model is developed to assess the transient lubrication during the initial start-up of an aero gear pump. The model takes into account the effects of surface topography, asperities contact, and pump start-up speed. In the pump simulation part, the flow inside pump and bearing load environment are analyzed by a computational fluid dynamics model. Then a simulation method is presented to solve the problem of pump-bearings system, considering the pump’s influence during bearings lubrication calculation. To gain insight, results of a series of simulations with illustrative examples are presented. The variation of the startup lubrication performance under load conditions corresponding to the pump internal flow field is acquired. The results show that bearings operate from mixed-lubrication to hydrodynamic-lubrication state with changed load-supporting effects during the startup. The load-supporting effects and film rupture boundary are directly related to the pump load fluctuation, but the center trace is slightly influenced except on the hydrodynamic-lubrication state.

2018 ◽  
Vol 70 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Jun-peng Shao ◽  
Guang-dong Liu ◽  
Xiao-dong Yu ◽  
Yan-qin Zhang ◽  
Xiu-li Meng ◽  
...  

Purpose The purpose of this paper is to describe a simulation and experimental research concerning the effect of recess depth on the lubrication performance of a hydrostatic thrust bearing by constant rate flow. Design/methodology/approach The computational fluid dynamics and finite volume method have been used to compute the lubrication characteristics of an annular recess hydrostatic thrust bearing with different recess depths. The performances are oil recess pressure, oil recess temperature and oil film velocity. The recess depth has been optimized. A test rig is established for testing the pressure field of the structure of hydrostatic thrust bearing after recess depth optimization, and experimental results show that experimental data are basically identical with the simulation results, which demonstrates the validity of the proposed numerical simulation method. Findings The results demonstrate that the oil film temperature decreases and the oil film pressure first increases and then decreases with an increase in the recess depth, but oil film velocity is constant. To sum up comprehensive lubrication performance, the recess depth of 3.5 mm is its optimal value for the annular recess hydrostatic thrust bearing. Originality/value The computed results indicate that to get an improved performance from a constant flow hydrostatic thrust bearing, a proper selection of the recess depth is essential.


Author(s):  
Xiangxu Meng ◽  
Chang Ge ◽  
Hongxi Liang ◽  
Xiqun Lu ◽  
Xuan Ma

An analytical approach based on a hydrodynamic lubrication model is presented to understand the bearing capacity, leakage, and friction moment of the slipper–swash-plate interface in a swash-plate-type axial piston pump. Furthermore, how the shaft speed, load pressure, and slipper attitude influence the lubrication performance of the interface is analyzed. The research shows that the slipper attitude has a significant effect on the pressure distribution. To improve the lubrication performance, a grooved sealing-land design is proposed, and the location and geometric parameters of the groove are analyzed. The results indicate that the optimal lubrication performance is achieved when the groove is 2.0–3.0 mm wide and 5–20 µm deep at its inner boundary.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
D. Souchet ◽  
A. Senouci ◽  
H. Zaidi ◽  
M. Amirat

In hydrodynamic lubrication, at very high rotational speed, the phenomenon of axial fluid leakage is often present. This can involve an increase of shear stress in the contact and consequently a considerable increase of the temperature. For that and in order to solve this problem, we took interest in the herringbone grooved journal bearings. The researches made before on these types of groove bearing have shown that they present a good dynamical behavior with a low eccentricity and a low axial flow. In this paper, a numerical study of a herringbone journal bearing operating behavior, under laminar and isothermal regime, is presented. The theoretical model, based on the classical Reynolds equation, is used. In order to include the film rupture and reformation, the Reynolds equation is modified using a mass conservative algorithm. To understand the behavior of these herringbone grooved journal bearings well, numerical modeling, using finite element method, has been developed. Various geometrical shapes of the herringbone grooved journal bearings have been analyzed, allowing us to limit the fluid leakage problem, by working particularly on the contact form.


2014 ◽  
Vol 66 (3) ◽  
pp. 337-345 ◽  
Author(s):  
Jun Sun ◽  
Xinlong Zhu ◽  
Liang Zhang ◽  
Xianyi Wang ◽  
Chunmei Wang ◽  
...  

Purpose – Current lubrication analyses of misaligned journal bearings were generally performed under some given preconditions. To make the lubrication analysis closer to the actual situation and usable to the journal bearing design, the purpose of this paper was to calculate the lubrication characteristics of misaligned journal bearings considering the viscosity-pressure effect of the oil, the surface roughness and the elastic deformation of the journal bearing at the same time. Design/methodology/approach – The lubrication of bearings was analyzed using the average Reynolds equation. The deformation of the bearing surface under oil film pressure was calculated by a compliance matrix method. The compliance matrix was established by finite element analysis of the bearing housing. The viscosity-pressure and viscosity–temperature equations were used in the analysis. Findings – The oil viscosity-pressure relationship has a significant effect on the lubrication of misaligned journal bearings. The surface roughness will affect the lubrication of misaligned journal bearings when the eccentricity ratio and angle of journal misalignment are all large. The directional parameter of the surface has an obvious effect on the lubrication of misaligned journal bearings. The deformation of the bearing surface has a remarkable effect on the lubrication of misaligned journal bearings. Originality/value – The lubrication characteristics of misaligned journal bearings were calculated considering the viscosity-pressure effect of the oil, the surface roughness and the elastic deformation of the journal bearing at the same time. The results of this paper are helpful to the design of the bearing.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Hiroyuki Yamada ◽  
Hiroo Taura ◽  
Satoru Kaneko

Surface texturing is a technique for improving frictional and hydrodynamic performances of journal bearings because microtextures can serve as reservoirs for oil or traps for debris and may also generate hydrodynamic pressure. Over the past two decades, many researchers have experimentally demonstrated that texturing of various tribological elements can reduce friction force and wear, contributing to improvement of lubrication performance. Some numerical studies have examined the hydrodynamic lubrication conditions and reported that surface texturing affects the static characteristics of journal bearings, such as their load carrying capacity and friction torque. However, the validity of these numerical models has not been confirmed because of a lack of experimental studies. This study proposes a numerical model that includes both inertial effects and energy loss at the edges of dimples on the surface of a journal bearing in order to investigate the bearing's static characteristics. Experimental verification of journal bearings is also conducted with a uniform square-dimple pattern on their full-bearing surface. The results obtained by the model agree well with those of experiment, confirming the model's validity. These results show that under the same operating conditions, textured bearings yield a higher eccentricity ratio and lower attitude angle than the conventional ones with a smooth surface. This tendency becomes more marked for high Reynolds number operating conditions and for textured bearings with a large number of dimples.


1986 ◽  
Vol 108 (4) ◽  
pp. 645-654 ◽  
Author(s):  
R. H. Buckholz ◽  
J. F. Lin

An analysis for hydrodynamic, non-Newtonian lubrication of misaligned journal bearings is given. The hydrodynamic load-carrying capacity for partial arc journal bearings lubricated by power-law, non-Newtonian fluids is calculated for small valves of the bearing aspect ratios. These results are compared with: numerical solutions to the non-Newtonian modified Reynolds equation, with Ocvirk’s experimental results for misaligned bearings, and with other numerical simulations. The cavitation (i.e., film rupture) boundary location is calculated using the Reynolds’ free-surface, boundary condition.


2012 ◽  
Vol 621 ◽  
pp. 196-199
Author(s):  
Shui Ping LI ◽  
Ya Li Yuan ◽  
Lu Gang Shi

Numerical simulation method of the internal flow field of fluid machinery has become an important technology in the study of fluid machinery design. In order to obtain a high-performance cement slurry mixer, computational fluid dynamics (CFD) techniques are used to simulate the flow field in the mixer, and the simulation results are studied. According to the analysis results, the structural parameters of the mixer are modified. The results show the mixer under the revised parameters meet the design requirements well. So CFD analysis method can shorten design period and provide valuable theoretical guidance for the design of fluid machinery.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Qi Liu ◽  
Baiqi Huo ◽  
Yunsheng Liu ◽  
Junchao Zhu

Purpose The edge of diesel engine crankshaft main bearing is more likely to fail in its real working condition. This paper aims to study the bearing failure mechanism by finding the relationship between bearing lubrication characteristics and its working condition. Design/methodology/approach This work builds the mixed lubrication model of crankshaft bearing to analyze the cause of bearing abnormal wear, and the finite difference method was used to solving the average Reynolds equation. During the analysis, journal misaligned angle, external load and roughness are considered. Findings The result shows that the wear of the diesel engine crankshaft bearing happens in engine startup phase and the bottom of the bearing are more prone to be excessively worn. Under the influence of journal misalignment, bearing asperity contact load and speed range of mixed lubrication will increase markedly. The edge of the bearing will be excessively worn. The effect of misalignment on bearing lubrication performance varies under different shaft rotation speed. Originality/value The former research studies on crankshaft bearing either just focused on its lubrication characteristics or interested in its failure types (wear, adhere, cavitation). This paper studies the relationship between bearing failure mechanism and lubrication performance.


Sign in / Sign up

Export Citation Format

Share Document