Climate justice without freedom

2015 ◽  
Vol 18 (3) ◽  
pp. 288-307 ◽  
Author(s):  
Tracey Skillington

Storm surges, flooding, heatwaves, and prolonged drought, as ever more regular features of life under deteriorating climate conditions, are unmistakably violent. Their effects on the lives of vulnerable human populations and ecosystems across the world are widely known to be devastating. Yet a legal order that denies the victims of such ecological persecution safe haven, no matter how great its use of force (e.g., detention, arrest, forced return) cannot, by definition, be violent. The power of law, used to protect states’ rights to exclude from their jurisdictions growing numbers displaced involuntarily by global climate harms, in being a source of ‘legitimate right’, is never the same as violence. This article challenges the ongoing validity of this assumption. It points to some of the ways in which legal instruments are used today to deny those displaced by climatic conditions sufficient normative status to guarantee their safety. What is needed instead is a new critical normative understanding of the evolving relationship between climate change, violence, justice, and law, one that re-assesses the democratic justificatory grounds for the current positions of non-responsibility for the climate displaced whilst re-affirming such people’s legal and political status as equal co-members of the politically constituted international community of humanity.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dan-Dan Yu ◽  
Shan Li ◽  
Zhong-Yang Guo

The evaluation of climate comfort for tourism can provide information for tourists selecting destinations and tourism operators. Understanding how climate conditions for tourism evolve is increasingly important for strategic tourism planning, particularly in rapidly developing tourism markets like China in a changing climate. Multidimensional climate indices are needed to evaluate climate for tourism, and previous studies in China have used the much criticized “climate index” with low resolution climate data. This study uses the Holiday Climate Index (HCI) and daily data from 775 weather stations to examine interregional differences in the tourist climate comfortable period (TCCP) across China and summarizes the spatiotemporal evolution of TCCP from 1981 to 2010 in a changing climate. Overall, most areas in China have an “excellent” climate for tourism, such that tourists may visit anytime with many choices available. The TCCP in most regions shows an increasing trend, and China benefits more from positive effects of climate change in climatic conditions for tourism, especially in spring and autumn. These results can provide some scientific evidence for understanding human settlement environmental constructions and further contribute in improving local or regional resilience responding to global climate change.


2015 ◽  
Vol 61 (4) ◽  
pp. 669-689 ◽  
Author(s):  
Pamela D. Noyes ◽  
Sean C. Lema

Abstract Global climate change is impacting organisms, biological communities and ecosystems around the world. While most research has focused on characterizing how the climate is changing, including modeling future climatic conditions and predicting the impacts of these conditions on biodiversity, it is also the case that climate change is altering the environmental impacts of chemical pollution. Future climate conditions are expected to influence both the worldwide distribution of chemicals and the toxicological consequences of chemical exposures to organisms. Many of the environmental changes associated with a warming global climate (e.g., increased average – and possibly extreme – temperatures; intense periods of drier and wetter conditions; reduced ocean pH; altered salinity dynamics in estuaries) have the potential to enhance organism susceptibility to chemical toxicity. Additionally, chemical exposures themselves may impair the ability of organisms to cope with the changing environmental conditions of the shifting climate. Such reciprocity in the interactions between climate change and chemicals illustrates the complexity inherent in predicting the toxicological consequences of chemical exposures under future climate scenarios. Here, we summarize what is currently known about the potential reciprocal effects of climate change and chemical toxicity on wildlife, and depict current approaches and ongoing challenges for incorporating climate effects into chemical testing and assessment. Given the rapid pace of new man-made chemistries, the development of accurate and rapid methods to evaluate multiple chemical and non-chemical stressors in an ecologically relevant context will be critical to understanding toxic and endocrine-disrupting effects of chemical pollutants under future climate scenarios.


2020 ◽  
Vol 45 (2) ◽  
pp. 59-66
Author(s):  
Adrianus Damanik ◽  
Khoiril Anwar Maryunani ◽  
Septriono Hari Nugroho ◽  
Purna Sulastya Putra

Foraminifera distribution is one of the proxies used to reconstruct climatic conditions and paleoceanography. Specific species or groups of foraminifera can be associated with certain oceanographic parameters. As one of the entrances of Indonesia Through Flow (ITF), North Papua Waters has the role of channeling water masses from the Pacific Ocean to the Indonesian Waters. It is also influenced by global thermohaline circulation and ENSO. In this study, observations were made of changes in the distribution of foraminifera to reconstruct paleoclimate and paleoceanographic conditions in the North Papua Waters and their relation to global climate conditions. The analysis was performed on 246 cm core sediments with eight cm foraminifera observation intervals at sample depths 246-126 cm and four cm at sample depths of 126-0 cm. Pulleniatina spp., Neogloboquadrina spp., and Globorotalia spp., are used for radiocarbon dating. Planktonic abundant species of foraminifera are Pulleniatina obliqueloculata, Neogloboquadrina dutertrei, Globorotalia menardii, Globigerinoides ruber, Globigerinoides trilobus, and the benthonic are Melonis pompilideus, Pullenia bulloides, Oolina sp., Planulina bradyii, Oridorsalis umbonatus, Cibicides subhaidingerii, Eggrela bradyii, Planulina wuelestroffi, and Quinqueloculina spp.,. Division according to cluster analysis can show the difference between Holocene and Pleistocene, which is then more detailed divided into 17 clusters. Based on biozonation there are some events that can be observed: climate variability since Late Pleistocene, record Pleistocene-Holocene boundary based on the significant variability of foraminifera distribution, and records some of the global climate events such as Last Glacial Maximum (~19-17 kyr), Younger Dryas (~11-9 kyr), and 8,2K event.


2018 ◽  
Vol 19 (5) ◽  
pp. 1960-1977
Author(s):  
AHMAD DWI SETYAWAN ◽  
JATNA SUPRIATNA ◽  
NISYAWATI NISYAWATI ◽  
SUTARNO SUTARNO ◽  
ILYAS NURSAMSI

Abstract. Setyawan AD, Supriatna J, Nisyawati, Sutarno, Sugiyarto, Nursamsi I. 2018. Predicting impacts of future climate change on the distribution of the widespread selaginellas (Selaginella ciliaris and S. plana) in Southeast Asia. Biodiversitas 19: 1960-1977. The current global climate is moving towards dangerous and unprecedented conditions that have been seen as a potentially devastating threat to the environment and all living things. Selaginella is a fern-allies that needs water as a medium for fertilization, hence its distribution is presumed to be affected by climate change. In Southeast Asia (SEA), there are two widely distributed selaginellas, namely Selaginella ciliaris and S. plana. S. ciliaris is a small herb (up to 4 cm), annual, abundant during the rainy season, and found in the middle-high plains, whereas S. plana is a stout large herb (up to 80 cm), perennial, and mainly found in the lowlands. The purpose of this study was to determine the potential niche distribution of S. ciliaris and S. plana under current climatic conditions, and to predict its future distribution under the impacts of climate change. We used Maxent software along with bioclimatic, edaphic, and UV radiation variables to model the potential niche distribution of those two selaginellas under current and future predictions climate conditions. We generated future predictions under four detailed bioclimatic scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) over three times intervals (2030, 2050, 2080). The results showed that future climatic conditions in the SEA had been predicted to significantly disrupt the distribution of suitable habitat of S. ciliaris and S. plana, and alter their geographic distribution patterns. Although some areas were predicted to become suitable habitat in the early period of future climate change, the overall projections show adverse effects of future climate conditions on the suitable habitat distribution of S. ciliaris and S. plana, as estimated losses of suitable habitat will be higher than the gains.


Author(s):  
Jung-A Yang ◽  
Sooyoul Kim ◽  
Hajime Mase ◽  
Nobuhito Mori

Projection of future storm surge height (SSH) based on results of ensemble climate experiments performed using a general climate model (hereafter, GCM) under future climate conditions is ready to start at the regional scale for disaster prevention against storm surge. However, there are limitation to estimate future SSHs with particular return periods which required in coastal structure design because of the lack of sample numbers of storm surge events on local scale. To obtain a large number of samples in localized catastrophic events, Mizuta et al. (2016) carried out an unprecedentedly large ensemble of climate simulations using a high-resolution global climate model over 5000 years. In this study, spatial pattern of storm surge values around the Korean Peninsula (hereafter, the KP) with 100-years return period are assessed based on the large ensemble experiments.


2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 290
Author(s):  
Koffi Djaman ◽  
Curtis Owen ◽  
Margaret M. West ◽  
Samuel Allen ◽  
Komlan Koudahe ◽  
...  

The highly variable weather under changing climate conditions affects the establishment and the cutoff of crop growing season and exposes crops to failure if producers choose non-adapted relative maturity that matches the characteristics of the crop growing season. This study aimed to determine the relationship between maize hybrid relative maturity and the grain yield and determine the relative maturity range that will sustain maize production in northwest New Mexico (NM). Different relative maturity maize hybrids were grown at the Agricultural Science Center at Farmington ((Latitude 36.69° North, Longitude 108.31° West, elevation 1720 m) from 2003 to 2019 under sprinkler irrigation. A total of 343 hybrids were grouped as early and full season hybrids according to their relative maturity that ranged from 93 to 119 and 64 hybrids with unknown relative maturity. The crops were grown under optimal management condition with no stress of any kind. The results showed non-significant increase in grain yield in early season hybrids and non-significant decrease in grain yield with relative maturity in full season hybrids. The relative maturity range of 100–110 obtained reasonable high grain yields and could be considered under the northwestern New Mexico climatic conditions. However, more research should target the evaluation of different planting date coupled with plant population density to determine the planting window for the early season and full season hybrids for the production optimization and sustainability.


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Kelly L. Bennett ◽  
William Owen McMillan ◽  
Jose R. Loaiza

Ae. (Stegomyia) aegypti L. and Aedes (Stegomyia) albopictus Skuse mosquitoes are major arboviral disease vectors in human populations. Interspecific competition between these species shapes their distribution and hence the incidence of disease. While Ae. albopictus is considered a superior competitor for ecological resources and displaces its contender Ae. aegypti from most environments, the latter is able to persist with Ae. albopictus under particular environmental conditions, suggesting species occurrence cannot be explained by resource competition alone. The environment is an important determinant of species displacement or coexistence, although the factors underpinning its role remain little understood. In addition, it has been found that Ae. aegypti can be adapted to the environment across a local scale. Based on data from the Neotropical country of Panama, we present the hypothesis that local adaptation to the environment is critical in determining the persistence of Ae. aegypti in the face of its direct competitor Ae. albopictus. We show that although Ae. albopictus has displaced Ae. aegypti in some areas of Panama, both species coexist across many areas, including regions where Ae. aegypti appear to be locally adapted to dry climate conditions and less vegetated environments. Based on these findings, we describe a reciprocal transplant experiment to test our hypothesis, with findings expected to provide fundamental insights into the role of environmental variation in shaping the landscape of emerging arboviral disease.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Julián A. Velasco ◽  
Francisco Estrada ◽  
Oscar Calderón-Bustamante ◽  
Didier Swingedouw ◽  
Carolina Ureta ◽  
...  

AbstractImpacts on ecosystems and biodiversity are a prominent area of research in climate change. However, little is known about the effects of abrupt climate change and climate catastrophes on them. The probability of occurrence of such events is largely unknown but the associated risks could be large enough to influence global climate policy. Amphibians are indicators of ecosystems’ health and particularly sensitive to novel climate conditions. Using state-of-the-art climate model simulations, we present a global assessment of the effects of unabated global warming and a collapse of the Atlantic meridional overturning circulation (AMOC) on the distribution of 2509 amphibian species across six biogeographical realms and extinction risk categories. Global warming impacts are severe and strongly enhanced by additional and substantial AMOC weakening, showing tipping point behavior for many amphibian species. Further declines in climatically suitable areas are projected across multiple clades, and biogeographical regions. Species loss in regional assemblages is extensive across regions, with Neotropical, Nearctic and Palearctic regions being most affected. Results underline the need to expand existing knowledge about the consequences of climate catastrophes on human and natural systems to properly assess the risks of unabated warming and the benefits of active mitigation strategies.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 207
Author(s):  
Javier Gómez-Gómez ◽  
Rafael Carmona-Cabezas ◽  
Elena Sánchez-López ◽  
Eduardo Gutiérrez de Ravé ◽  
Francisco José Jiménez-Hornero

The last decades have been successively warmer at the Earth’s surface. An increasing interest in climate variability is appearing, and many research works have investigated the main effects on different climate variables. Some of them apply complex networks approaches to explore the spatial relation between distinct grid points or stations. In this work, the authors investigate whether topological properties change over several years. To this aim, we explore the application of the horizontal visibility graph (HVG) approach which maps a time series into a complex network. Data used in this study include a 60-year period of daily mean temperature anomalies in several stations over the Iberian Peninsula (Spain). Average degree, degree distribution exponent, and global clustering coefficient were analyzed. Interestingly, results show that they agree on a lack of significant trends, unlike annual mean values of anomalies, which present a characteristic upward trend. The main conclusions obtained are that complex networks structures and nonlinear features, such as weak correlations, appear not to be affected by rising temperatures derived from global climate conditions. Furthermore, different locations present a similar behavior and the intrinsic nature of these signals seems to be well described by network parameters.


Sign in / Sign up

Export Citation Format

Share Document