Investigation on three-directional dynamic interaction between a heavy-duty vehicle and a curved bridge

2017 ◽  
Vol 21 (5) ◽  
pp. 721-738 ◽  
Author(s):  
Shaohua Li ◽  
Jianying Ren

Considering the nonlinear property of suspension damping and tire stiffness, a full-vehicle model is built for a heavy-duty truck. A modified preview driver model with nonlinear time delay is inserted into the vehicle model to compute the suitable steering angle of the front wheel and to make the vehicle follow the required route. Next, the finite element model of a five-span continuous curved highway bridge is established, and the bridge’s inherent frequencies and modes are obtained. The curved bridge and the vehicle are coupled by three-directional tire forces, and a three-directional driver–vehicle–bridge interaction model is presented. The presented vehicle model and bridge model are verified by comparing with the published works. The dynamic impact factors of vertical, lateral, and torsional displacements of the bridge are calculated when a vehicle is traversing through the bridge, and the impact factors’ distributions along the bridge are analyzed. The effects of vehicle driving conditions on impact factors are also researched. It is found that the impact factor calculated from the present specification for a straight bridge is smaller than that from the three-directional driver–vehicle–bridge interaction model, and the vertical and torsional impact effects at the third span midpoint are greater than the lateral impact effect.

2019 ◽  
Vol 23 (1) ◽  
pp. 160-173
Author(s):  
Enli Chen ◽  
Xia Zhang ◽  
Gaolei Wang

Steel–concrete bridges on highways are now widely used, and their dynamic coupling effect is more prominent under heavy vehicles. At present, for the study of vehicle–bridge coupling, it is difficult to reflect the mechanical response characteristics of the bridge pavement because the bridge pavement (road) is often considered as a load. In order to get closer to reality, we use the whole vehicle model and the bridge model to realize the dynamic coupling of highway vehicle–bridge. Moreover, the vehicle model can take into account tire characteristics, such as various linear and nonlinear suspension characteristics, and tire–ground contact characteristics. So, a new vehicle–road–bridge interaction method with higher computational efficiency is proposed. This method can be used not only to analyze the overall mechanical response of bridge structure such as deflection and stress but also to analyze the dynamic characteristics of driving vehicles and the coupling force between tires and pavement and then to analyze the dynamic deformation and stress of asphalt pavement layers on the bridge. First, according to the construction drawings of a steel–concrete bridge on a highway and a Dongfeng brand three-axle vehicle, a vehicle–road–bridge interaction rigid–flexible coupling model was established. Second, the correctness and effectiveness of the vehicle–road–bridge interaction model were verified by field testing. Finally, the dynamic response of the vehicle–road–bridge interaction rigid–flexible coupling model was analyzed.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lei Yan ◽  
Guo Li ◽  
Kang An ◽  
Kefeng Yue ◽  
Zhi Lin

The non-uniform stratum and uneven surface have the complicated seismic spatial variability. The seismic response of high pier and small radius curved bridge caused by the seismic specificity of this kind of terrain has not been systematically studied. According to the multi-point excitation theory of long-span structures and the similar theory of shaking table test in model structures, a high pier with small radius curved girder bridge was used as the research object. The shaking table test of real bridge model was carried out to study the seismic response laws of this kind of bridge under multi-point excitation. The results show that the designed seismic wave expansion device can meet the test requirements. The frequency of the model structure decreases rapidly and the damping ratio increases during the whole test process. The local terrain effect amplifies the seismic response of high pier and small radius curved bridge. The seismic response of high pier and small radius curved bridge is affected by different frequency spectrum seismic waves, and there is a big difference. Based on the above results, the impact of multi-point excitation should be considered in seismic design of high pier with small radius curved bridge.


2011 ◽  
Vol 287-290 ◽  
pp. 472-476
Author(s):  
Tso Liang Teng ◽  
Cho Chung Liang ◽  
Chien Jong Shih ◽  
Manh Trung Nguyen

Traffic accidents are the worldwide problem. Based on many reports in the word, the front parts of vehicle is the most likely to strike at pedestrians when the accident occurs. And the fatal injuries almost occurred to pedestrians when their head impact to the vehicle hood. So it’s necessary to reduce the pedestrian injuries as much as possible to enhance the safety characteristic, one of the most importance criteria for vehicles manufactures. In this study, the effect of sandwich structure with material of carbon fiber reinforced polycarbonate (CF/PC) will be concerned as vehicle bonnet change. The finite element model of headform impactor and Honda vehicle model was analyzed detail by LS-DYNA as simulation. The impact between headform impactor and original vehicle model or the carbon fiber reinforced polycarbonate material bonnet vehicle model was executed and the comparison result was shown. This study, the European Enhanced Vehicle-safety Committee/ Working Group 17 (EEVC/WG17) and NCAP requirements was adopted.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
S. H. Li ◽  
J. Y. Ren

Under complicated driving situations, such as cornering brake, lane change, or barrier avoidance, the vertical, lateral, and longitudinal dynamics of a vehicle are coupled and interacted obviously. This work aims to propose the suitable vehicle and driver models for researching full vehicle dynamics in complicated conditions. A nonlinear three-directional coupled lumped parameters (TCLP) model of a heavy-duty vehicle considering the nonlinearity of suspension damping and tire stiffness is built firstly. Then a modified preview driver model with nonlinear time delay is proposed and connected to the TCLP model to form a driver-vehicle closed-loop system. The presented driver-vehicle closed-loop system is evaluated during a double-lane change and compared with test data, traditional handling stability vehicle model, linear full vehicle model, and other driver models. The results show that the new driver model has better lane keeping performances than the other two driver models. In addition, the effects of driver model parameters on lane keeping performances, handling stability, ride comfort, and roll stability are discussed. The models and results of this paper are useful to enhance understanding the effects of driver behaviour on full vehicle dynamics.


2013 ◽  
Vol 353-356 ◽  
pp. 1732-1738
Author(s):  
Zhao Bo Meng ◽  
Teng Fei Zhao ◽  
Jie Jin ◽  
Xi Feng Li

The effects of metro line 2 and line 6 on Xi'an Bell Tower was studied by numerical analysis in this paper. At first, according to the theory of Euler-Bernoulli beam in Winkler foundation, the analysis model of train-track-foundation system was established, and then, time-history curve of metro-induced loading acts on tunnel structure is obtained by using Matlab produce platform. Secondly, two-dimensional finite element model of the structure-soil-tunnel interaction model was established using ANSYS. Finally, the impact of metro line 2 and 6 and ground transportation on Xi’an Bell Tower was evaluated according to the Technical specification for protection of historic buildings against man-made vibration. The construction of Metro Line 2 and Line 6 will affect the safety of Xi'an Bell Tower.


2017 ◽  
Vol 17 (07) ◽  
pp. 1740036 ◽  
Author(s):  
AILI QU ◽  
DONGMEI WANG ◽  
XIANGSEN ZENG ◽  
QIU’GEN WANG

Objective: To investigate and validate dynamic response of the pelvis, a finite element model of seated pelvic complex comprising of bone, ligaments, abdominal artery and soft tissue was developed and concurrently, a cadaver experiment was set up. Materials and Methods: Based on supine scanned CT images, we first developed an FE pelvic complex model and modified it to construct a seated pelvic model by anteriorly rotating the proximal femur to 90[Formula: see text]. For the cadaver experiment, a customized pelvic impact apparatus was designed and optical devices, strain gauges and pressure detectors were used to measure the pelvic response. Results: The results of the FE analysis and the cadaver tests were congruent in terms of impact force and fracture sites. Dynamic arterial response to the lateral impact showed hemodynamic instability that was displayed in pressure variation. The response of ligaments indicated that the posterior ligaments of pelvic ring experienced a larger amount of load. Conclusion: FE results provided the impact of ligaments and arteries besides impact force, compression (C) and viscous criterion (VC). Accordingly, the cadaver experiment measured arterial pressure, impact force, bone strain and compression. The compatibility between the FE and cadaver analyses demonstrates the high bio-fidelity of our pelvic complex model.


1999 ◽  
Author(s):  
Masami Iwamoto ◽  
Kazuo Miki ◽  
Babushankar Sambamoorthy ◽  
King H. Yang ◽  
Albert I. King

Abstract During an automotive side impact, the shoulder is likely to be the first body part that is directly impacted either by the internal structures of the vehicle or by the side airbag. Therefore, a good understanding of the injury mechanism and the kinematics of the shoulder is critical for occupant protection in side impact. Existing side impact crash dummies do not have structures that are capable of reproducing the kinematics and kinetics of a human occupant. Over the past several years, many numerical models have been developed from head to foot in an attempt to overcome the shortcomings of these crash dummies. However, relatively few attempts have been made to include the shoulder. The purpose of this study is to develop a finite element model of the human shoulder in order to achieve a deeper understanding of the injury mechanism and the kinematics of the shoulder in side impacts. Basic anthropometric data used to develop the skeletal portion of the shoulder model were taken from a commercial data package of the human shoulder geometry (Viewpoint Datalabs). This geometry was scaled to fit a 50th percentile male occupant according to the data reported by Schneider et al. (1983). The shoulder model included the three bones of the shoulder, namely the humerus, scapula and clavicle. Each bone was modeled in two parts. The spongy bone was modeled using crushable solids and the cortical bone was modeled using damageable shell elements. The model also includes major ligaments, which form the acromioclavicular and sternoclavicular articulations. The deltoid muscle, which was modeled by crushable solids in order to absorb part of the impact energy, was added to this model for lateral impact simulations. This shoulder model was then integrated with a human thorax model developed by Wang (1995), along with other preexisting models of other parts of the human anatomy. Material properties for the model were taken from the literature. Experimental data obtained from lateral impact sled tests of 17 cadavers conducted at Wayne State University were used to validate the model. Impact forces in four regions, specifically, the shoulder, thorax, abdomen and pelvis, were calculated by the model and were compared with forces obtained experimentally from rigid wall impacts at 6.7m/s and padded wall impacts at 8.9m/s.


2018 ◽  
Vol 9 (4) ◽  
pp. 484-503 ◽  
Author(s):  
Luwei Chen ◽  
Hao Wu ◽  
Qin Fang ◽  
Tao Zhang

Accidents involving collisions of heavy-duty trucks with highway bridge piers occurred occasionally, in which the bridge piers might be subjected to severe damage, and cause the collapse of the superstructure due to the loss of axial loading capacity. The existing researches are mostly concentrated on the light- or medium-duty trucks. This article mainly concerns about the collisions between the heavy-duty trucks (e.g. tractor-trailer) and bridge piers as well as the evaluation of the impact force. First, by modifying the finite element model of Ford F800 single-unit truck, which was developed by National Crash Analysis Center, the finite element model of a tractor-trailer is established. Then, the full-scale tractor-trailer crash test on concrete-filled steel pier jointly conducted by Texas Transportation Institute, Federal Highway Administration, and Texas Department of Transportation is numerically simulated. The impact process is well reproduced and the established model is validated by comparison of the impact force. It indicates that the tractor-trailer impact force time history consists of two or three peaks and the corresponding causes are revealed. Furthermore, the parametric influences on the impact force are discussed, including the diameter and cross section shape of the pier, cargo weight, impact velocity, relative impact position, and vehicle type. Finally, the finite element model of an actual reinforced concrete highway bridge pier is established, and the impact force and lateral displacement of the pier subjected to the impact of the tractor-trailer are numerically derived and discussed.


2014 ◽  
Vol 599-601 ◽  
pp. 503-506
Author(s):  
Jun Liang Liu ◽  
Yu Hong Long ◽  
Wen Shang Li ◽  
Jie Cai

An automobile will sustain various incentives from the outside and inside in the process of being driven, in which the impact of the wheel and the vibration of engine mainly dominates. This paper gets the inherent frequency through modal analysis on finite element model in a heavy vehicle’s driving cab. And then it conducts the forced response analysis on finite element model by modeling a condition where the vibration of driving cab is caused by outside incentive. Through analyzing, it finds the main response region generated in driving cab when affected by outside incentive. At the same time, it can provide certain theoretical basis for controlling the noise of driving cab in the future.


2007 ◽  
Vol 14 (3) ◽  
pp. 229-248 ◽  
Author(s):  
K. Nallasivam ◽  
Anjan Dutta ◽  
Sudip Talukdar

The impact on curved box-girder bridges due to vehicle moving across rough bridge deck have been analyzed using bridge-vehicle coupled dynamics. The bridge deck unevenness has been assumed to be a homogeneous random process in space specified by a PSD function. The analysis incorporates the effect of centrifugal forces due to vehicle moving on curved bridge. The curved box-girder bridge has been numerically modeled using computationally efficient thin-walled box-beam finite elements which take into account the torsional warping, distortion and distortional warping, that are important features of thin-walled box girders. Rigid vehicle with longitudinal and transverse input to the wheels giving rise to heave-pitch-roll degrees of freedom has been considered. The theoretical bridge model used in simulation study has been validated by a free vibration experiment using impact excitation. The impact factors for several response parameters such as bending moment, shear force, torsional moment, torsional bi-moment, distortional moment, distortional bi-moment and vertical deflections have been obtained for various bridge-vehicle parameters. Both constant velocity and forward acceleration of the vehicle have been considered to examine impact factor. The results highlighted that the impact factors of a curved box girder bridge corresponding to torsion, distortion and their corresponding bimoments have been observed to be generally very high, while those of the other responses are also relatively higher than that of corresponding straight box girder bridge.


Sign in / Sign up

Export Citation Format

Share Document