Damage detection in bridges under moving loads based on subspace projection residuals

2022 ◽  
pp. 136943322110561
Author(s):  
Zhenhua Nie ◽  
Yongkang Xie ◽  
Jun Li ◽  
Hong Hao ◽  
Hongwei Ma

This paper proposes a data-driven method using subspace projection residual of the responses to identify the damage locations in bridges subjected to moving loads. In this method, a moving window with a certain length determined by the sampling frequency and the fundamental frequency of the measured responses is used to cut out the acceleration responses of the bridge subjected to a moving vehicle. The characteristic subspaces of the windowed signals are subsequently extracted to calculate the local damage index using the subspace projection residual. When the window moves to the damage location, the orthogonality between the active subspace of the damaged state and the null subspace of the healthy state is invalid, which leads to a relatively large projection residual that can be used to localize the damage. To improve the reliability of the proposed approach, a one-side upper confidence limit is introduced. A simply supported beam bridge subjected to a moving mass is simulated to verify the effectiveness of the proposed method. Numerical results indicate that the proposed approach can accurately localize the single and multiple damages, even when the responses are smeared with a significant noise. Experimental tests conducted on a steel beam bridge model also demonstrate the performance and accuracy of the proposed approach. The results demonstrate that the proposed method can localize the damage even with a small number of sensors, indicating the method has a good and promising performance for practical engineering applications.

2019 ◽  
Vol 19 (3) ◽  
pp. 917-937 ◽  
Author(s):  
Zhenhua Nie ◽  
Jun Lin ◽  
Jun Li ◽  
Hong Hao ◽  
Hongwei Ma

A novel damage detection approach using only two sensors to detect the damage in beam bridges subjected to a moving vehicle is proposed in this article. In this approach, a moving mass is considered representing a vehicle moving across the bridge, and structural vibration responses at two locations are measured from a pair of sensors. A moving window is defined with a certain length determined by the sampling frequency and the fundamental frequency of the measured responses. The windowed pair time series extracted from these two measured responses are used to calculate the cross-correlation, which is used to define the local damage index. A simply supported beam bridge subjected to a moving mass is simulated to demonstrate the effectiveness and accuracy of the proposed approach. Numerical results indicate that the proposed approach can accurately identify the single and multiple damages using both displacement and acceleration responses, even when the responses are smeared with a significant noise. This indicates a good robustness to the noise effect. Experimental verifications on a laboratory beam bridge model demonstrate that the proposed approach can successfully identify the damage location using different selections of sensor pairs. Both the numerical and experimental results demonstrate that the new damage index is a good candidate for structural damage detection with very limited measurement information.


Author(s):  
Zhiwei Chen ◽  
Yigui Zhou ◽  
Wen-Yu He ◽  
Mengqi Liu

The critical signal component extracted from the bridge response caused by a moving vehicle is normally used to construct damage index for damage detection. The dynamic response of bridges subjected to moving vehicle includes several components, among which the quasi-static component reflects the inherent characteristics of the bridge. In view of this, this paper presents a bridge damage detection method based on quasi-static component of the moving vehicle-induced dynamic response. First, damage-induced changes of the natural-frequency component, moving-frequency component and quasi-static component responses are investigated via a simply-supported beam bridge. The quasi-static component response is proved to be less sensitive to the moving velocity of the load and more suitable for damage detection. Subsequently, a quasi-static component response extraction method is proposed based on analytical mode decomposition (AMD) and moving average filter (MAF). The extracted quasi-static component response is further employed to localize and quantify damages. Finally, numerical simulations are conducted to examine the feasibility, accuracy and advantages of the proposed damage detection method. The results indicated that the proposed method performs well in different damage scenarios and is insensitive to the moving velocity of the load and road roughness.


2014 ◽  
Vol 533 ◽  
pp. 140-144
Author(s):  
Shi Zhu Yang ◽  
Xin Wei Yang

We studied chaotic threshold of a nonlinear dynamical system of beam bridge. The amplification and minification of integral inequality are proposed, which lead to the criteria for chaotic motion directly for the nonlinear system with a half sine pulse excitation avoiding the conventional approximation methods to retain the nature characteristics of the system. The efficiency of the criteria for chaotic motion obtained by use of the Melnikov's method is verified via the bifurcation diagrams, Lyapunov exponents and numerical simulations.


2007 ◽  
Vol 347 ◽  
pp. 311-317
Author(s):  
Igor Bovio ◽  
Leonardo Lecce

The purpose of the paper is to present an innovative application within the Non Destructive Testing field based upon vibration measurements developed by the authors, and already tested for analysing damage of many structural elements. After having tested this application on different test articles in laboratory condition, experimental tests have been executed, in collaboration with the ATR company, on a turboprop ATR-72 aircraft, in order to validate the technique on a real aeronautical structure. The monitoring system have operated an off-line check on the structure, during the aircraft ground operations, as if it were a normal maintenance procedure. The results are reported in the paper. This proposed new method is based upon the acquisition and comparison of the Frequency Response Functions (FRFs) of the monitored structure before and after damage occurs. Structural damage modify the dynamic behaviour of a structure affecting its mass, stiffness and damping, and consequently the FRFs of a damaged structure, when compared with the FRFs of its sound configuration, making the identification, localization and quantification of damage possible. The activities presented in the paper focus mainly on a new FRFs processing technique based upon the determination of a representative “Damage Index” for identifying and analysing damage. Furthermore, a dedicated neural network algorithm has been elaborated to develop an automatic system which recognises positive samples, “healthy” states of the analysed structure, discarding negative ones, “damaged or perturbed” states of the analysed structure. From an architectural standpoint, piezoceramic patches have been used as both actuators and sensors.


2008 ◽  
Vol 400-402 ◽  
pp. 633-638
Author(s):  
Min Chen ◽  
Zhong Chu Tian ◽  
Guo Liang Zeng

In practical engineering, we often encounter designs of variable cross-section or compound section skew girder bridge. While in many bibliographies, uniform cross-section of the concrete beams studying was carried out, but few of variable cross-section concrete beams were in-depth studied. Based on analyzing the mechanical behavior of variable cross-section beam skew girder bridge, the semi-analytic solution of variable cross-section beam skew girder bridges were provided in this paper. With this method developed a planar computation program to resolve the calculation problems of skew girder bridge, a more convenient way will be brought up for designers in calculation.


2014 ◽  
Vol 578-579 ◽  
pp. 1032-1036
Author(s):  
Yong Qin

Starting with damage identification index method on the basis of the curvature mode, the first-order curvature mode ratio is proposed, and then it is made a numerical simulation analysis for a single span simple beam bridge with ANSYS. The identification of structure damage degree under the damage on the single position is studied. The fitted polynomial based on the derivation of the first-order curvature mode ratio can estimate the damage degree; it has a good reference value for the damage detection of structures in practical engineering.


Author(s):  
Lang Liu ◽  
◽  
Lexian Zhang ◽  
Jie Wang ◽  
Hong Yang ◽  
...  

The traffic on highway bridges has been increasing in both volume and magnitude, which even has become one of the main reasons leading to damages and collapse of bridges. Most of the existing regulations for overloading checking are carried out based on various limits of gross vehicle weights and axle loads. However, the results of relevant researches show that weight is only a potential factor but not the dominating factor in threatening the safety of bridges. In this study, the concept of load-effect-based heavy truck is proposed for overloading checking, and then three years of WIM data were collected and used to develop heavy truck models for each truck type, based on the understanding of the characteristics and configurations of heavy trucks as well as the distribution of their main parameters. Furthermore, the typical heavy truck models selected and their possible combinations are applied to a simply supported pre-stressed concrete T-beam bridge model with three loading levels, considering one-lane, two-lane and three-lane loaded respectively, then the induced load effect, deflection and stress are discussed for 20 loading cases. The results show the bending moment caused by heavy trucks moving on multiple lanes is 1.6 times the value of the standard truck model in Chinese specification, and the eccentric loading due to a very heavy vehicle moving on single lane usually lead to more severe effect.


2014 ◽  
Vol 638-640 ◽  
pp. 937-941
Author(s):  
Jie Jun Wang ◽  
Peng Tan ◽  
Jiang Ya Yuan ◽  
Hai Qing Yuan ◽  
Gui Ming Zhang

This paper simulates the practical engineering, using plexiglass to make a three-span continuous wide curved box girder model by the geometry scale ratio 1:30. With the model load test, measured the strain and deflection of the control cross-sections, got the distribution about the stress and deflection of the wide curved continuous box girder; And we proposed the “uniformity coefficient” to express the uneven force of the curved bridge. Compared the finite element analysis results and experimental data, the results show both are in good agreement.


2012 ◽  
Vol 446-449 ◽  
pp. 1067-1070
Author(s):  
Rong Xia Wang ◽  
Xiang Shang Chen ◽  
Fan Li ◽  
Shao Wei Zhao

The continuous rigid frame bridge has been applied widely in our country. But in recent years, over-deflection of beam in this bridge has become an serious problem. This may cause the redistribution of displacement and internal force of the whole structure, especially in dynamic load status. A two-dimensional pile-soil-bridge model is built up in ANSYS based on a factual bridge. The over-deflection is considered as the decrease of beam elastic modulus or rigidity. The displacement and internal force of key parts are analysed in static and dynamic vehicle load. The study shows that over-deflection will reduce the first three natural vibration frequency, weaken the sensitivity of bridge to dynamic load. In dynamic load status, the displacement and internal force will be influenced by beam rigidity.


Sign in / Sign up

Export Citation Format

Share Document