scholarly journals Rigid-flexible coupling modelling and dynamic performance analysis of novel flexible road wheel

Author(s):  
Yaoji Deng ◽  
Youqun Zhao ◽  
Han Xu ◽  
Fen Lin ◽  
Qiuwei Wang

A novel flexible road wheel with hub-hinge-ring combined structure is introduced to improve the buffer damping performance and lightweight level of tracked vehicles. To balance computational efficiency and precision, an advanced rigid-flexible coupled model of the flexible road wheel is established using a hybrid modelling method combining finite element method and multi-body dynamics. The reliability and accuracy of the established rigid-flexible coupled model are verified by wheel static loading experiment. The modal flexible body of the elastic outer ring is developed by modified Craig-Bampton method and the simulated results are in good agreement with the experimental data. Based on the verified rigid-flexible coupled model, the dynamic characteristics of the flexible road wheel under typical operation conditions were investigated. The simulation results show that when the motion state changes, the elastic outer ring will produce a hysteretic angle with respect to the hub, delaying the transmission of torque. The system parameters have a greater effect on the vertical vibration of the flexible road wheel. The higher the vehicle speed, the more vibration will be caused, and the increase in the load and number of hinge groups will reduce the vibration. The research results provide reference for structure optimization of flexible road wheel and lay a foundation for flexible multi-body dynamic simulation of tracked vehicles with flexible road wheels.

2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Yuliang Li ◽  
Chong Tang

In order to conveniently analyze the dynamic performance of tracked vehicles, mathematic models are established based on the actual structure of vehicles and terrain mechanics when they are moving on the soft random terrain. A discrete method is adopted to solve the coupled equations to calculate the acceleration of the vehicle’s mass center and tractive force of driving sprocket. Computation results output by the model presented in this paper are compared with results given by the model, which has the same parameters, built in the multi-body dynamic software. It shows that the steady state calculation results are basically consistent, while the model presented in this paper is more convenient to be used in the optimization of structure parameters of tracked vehicles.


Author(s):  
Xiaofeng Yang ◽  
Long Yan ◽  
Yujie Shen ◽  
Hongchang Li ◽  
Yanling Liu

Inerter, a new type of mass element, can increase the inertia of motion between two endpoints. In order to study the dynamic inertia effect of inerter–spring–damper suspension for heavy vehicle on ride comfort and road friendliness, the inerter–spring–damper suspension is applied and its mechanism is studied. This paper establishes a half vehicle model of inerter–spring–damper suspension for heavy vehicle. The parameters of inerter–spring–damper suspension for heavy vehicle are optimized by multi-objective genetic algorithm and system simulations are carried out. The parametric influence of different spring stiffness, damping coefficient, inertance, and load on suspension performance is also studied. The simulation results demonstrate that the centroid acceleration and pitch angular acceleration are improved by 24.90% and 23.54%, respectively, and the comprehensive road damage coefficient is reduced by 4.05%. The results illustrate that the inerter–spring–damper suspension can decrease the vertical vibration of vehicle suspension especially in low frequency and reduce the road damage. The analyses of suspension parameters perturbation reveal their different effect laws of the different wheels on vehicle ride comfort and road friendliness, which provide a theoretical basis for setting parameters of inerter–spring–damper suspension.


2018 ◽  
Vol 38 (3) ◽  
pp. 288-295
Author(s):  
Guo HaoLiang ◽  
Mu XiHui ◽  
Yang XiaoYong ◽  
Lv Kai

The rubber track system can be quickly swapped on the tyres, exerting a smaller ground pressure while generating a greater adhesion to solve the problem vehicles faced in traversing rough and difficult terrain. This paper will discuss the influence of rubber track system on the ride comfort of engineering vehicles with rigid suspension. First, a multi-body dynamic model of the rubber track system and a mathematical model of contact between the ground and the track are established, and then the macro commands are programmed to add many complex contact forces. Moreover, by using the method of physical prototype obstacle testing, the correctness of the simulation model is validated. The ride comfort of the engineering vehicle when equipped with rubber track system is explored by the method of the multi-body dynamics and real vehicle test. The research shows that a flexible roller wheel system can significantly improve the ride comfort of the engineering vehicle when compared to wheeled vehicles. When the vehicle speed is low, the weighted root-mean-square acceleration of the wheeled vehicle and tracked vehicle is almost the same. At the same time, it is verified that the ride comfort of the steel-chain tracked vehicles is worse than that of rubber tracked vehicles, due to the polygon effect. Through the multi-body dynamics simulation of the virtual prototype, we can predict and evaluate the ride comfort of vehicles, saving the cost of testing and obtaining the actual experimental data, which has great significance for the research and development of vehicles.


2013 ◽  
Vol 748 ◽  
pp. 386-389
Author(s):  
Da Kui Wang ◽  
Jun Zhang ◽  
Xiu Juan Zhang ◽  
You Yi Sheng

Wheel profiles in different abrasion stages are tracked and measured for locomotives SS4. They are then matched with rail profiles in the measured wear stability period. In order to contrast the wheel profiles in different abrasion stages, multi-body dynamic software named SIMPACK is adapted to set up a complete dynamics model of locomotives. The influence of wheel profiles in different abrasion stages on the dynamic performances of locomotives is simulated and analyzed. Analysis results state that locomotives using the wheel profiles of typeII have the good stability for their line operation. Locomotives using the wheel profiles of type I have the highest critical hunting speed of 223km/h, which is 54.8% larger than those of wheel profile JM3. When locomotives pass through curve tracks, the value of derailment factor for the wheel profiles of typeII is the smallest and achieves an excellent level, which explains that the wheel profiles of typeII can obtain the good curve negotiation performance.


Author(s):  
Junxiong Hu ◽  
Weihua Ma ◽  
Shihui Luo

The low- and medium-speed maglev vehicle generally operates on elevated bridges with a levitation gap of only 8--10 mm, which makes it very sensitive to the vehicle--bridge coupled vibration. To conduct the corresponding modeling and simulation with common dynamics tools, an equivalent processing of the levitation system is required. Using the dynamics software SIMPACK, this paper first introduces the methods of building the multi-body vehicle system, levitation control system and the elastic bridge, respectively, in the SIMPACK railway module, levitation control module and SIMBEAM elastomer module, thus providing a modeling idea for the simulation of the active levitation and operation of low- and medium-speed maglev vehicles through multi-span bridges. It then goes on to simulate and analyze the coupled vibration of a 160 km/h low- and medium-speed maglev vehicle passing through 25 m + 25 m double-span continuous bridges. The research results show that the modeling method introduced in this paper can simulate the low- and medium-speed maglev vehicle--bridge coupled vibration phenomenon, which can be affected significantly by the low-order frequency of the elastic bridge, and can also be intensified under the bridge end impact when the vehicle enters and leaves the bridge. As the running speed of the vehicle increases and the dynamic force increases, the vertical vibration amplitudes of the elastic bridge mid-span, the car body as well as the levitation frame approximate a linear fitting with the vehicle speed. The variation amplitudes of the levitation gap and of the electromagnet current approximate a quadratic fitting with the vehicle speed.


2019 ◽  
Vol 12 (4) ◽  
pp. 339-349
Author(s):  
Junguo Wang ◽  
Daoping Gong ◽  
Rui Sun ◽  
Yongxiang Zhao

Background: With the rapid development of the high-speed railway, the dynamic performance such as running stability and safety of the high-speed train is increasingly important. This paper focuses on the dynamic performance of high-speed Electric Multiple Unit (EMU), especially the dynamic characteristics of the bogie frame and car body. Various patents have been discussed in this article. Objective: To develop the Multi-Body System (MBS) model of EMU, verify whether the dynamic performance meets the actual operation requirements, and provide some useful information for dynamics and structural design of the proposed EMU. Methods: According to the technical characteristics of a typical EMU, a MBS model is established via SIMPACK, and the measured data of China high-speed railway is taken as the excitation of track random irregularity. To test the dynamic performance of the EMU, including the stability and safety, some evaluation indexes such as wheel-axle lateral forces, wheel-axle lateral vertical forces, derailment coefficients and wheel unloading rates are also calculated and analyzed in detail. Results: The MBS model of EMU has better dynamic performance especially curving performance, and some evaluation indexes of the stability and safety have also reached China’s high-speed railway standards. Conclusion: The effectiveness of the proposed MBS model is verified, and the dynamic performance of the MBS model can meet the design requirements of high-speed EMU.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2950
Author(s):  
Vinod Kumar ◽  
Liqiang Duan

Coal consumption and CO2 emissions are the major concerns of the 21st century. Solar aided (coal-fired) power generation (SAPG) is paid more and more attention globally, due to the lesser coal rate and initial cost than the original coal-fired power plant and CSP technology respectively. In this paper, the off-design dynamic performance simulation model of a solar aided coal-fired power plant is established. A 330 MW subcritical coal-fired power plant is taken as a case study. On a typical day, three various collector area solar fields are integrated into the coal-fired power plant. By introducing the solar heat, the variations of system performances are analyzed at design load, 75% load, and 50% load. Analyzed parameters with the change of DNI include the thermal oil mass flow rate, the mass flow rate of feed water heated by the solar energy, steam extraction mass flow rate, coal consumption, and the plant thermal efficiency. The research results show that, as DNI increases over a day, the coal saving rate will also increase, the maximum coal saving rate reaches up to 5%, and plant thermal efficiency reaches 40%. It is analyzed that the SAPG system gives the best performance at a lower load and a large aperture area.


Sign in / Sign up

Export Citation Format

Share Document