Investigation on the mechanical properties of press-hardened boron steel sheets using the conductive heating technique

Author(s):  
O Kocar ◽  
H Livatyalı

An aluminized 22MnB5 (Boron) steel sheet, used for structural parts in the automotive industry, was subjected to press-hardening followed by austenitizing, both in a conventional furnace and via the conductive (electric resistance) heating method, an innovative technique based on the Joule’s principle for fast heating of the sheet metal. Conductive heating presents a number of advantages over the in-furnace heating method. These include a more efficient use of energy, as well as the requirement of less time and space for heating, thus lowering costs. After press-hardening was performed using both methods, the microstructural and mechanical characterizations of both specimens were examined for optical microscopy, hardness, tensile strength, and high-speed impact tests. The results showed that the press-hardening process transformed the ferritic–pearlitic microstructure in the as-received state into martensite after die quenching and caused a substantial increase in hardness and strength at the expense of ductility and impact toughness. On the other hand, no significant difference was observed in either the microstructure or mechanical properties with respect to the heating method used. The results obtained in the present investigation concur with the findings of current literature.

Author(s):  
Dirk Landgrebe ◽  
Julia Schönherr ◽  
Norbert Pierschel ◽  
Stefan Polster ◽  
Andre Mosel ◽  
...  

In the last decade, press hardening has become a fully established technology in both science and industry for the production of ultra-high-strength structural components, especially in the automotive industry. Beside the improvement of car performance such as safety and lightweight design, the production process is also one focus of trends in technology development in the field of press hardening. This paper presents an overview about alternative approaches for optimized process chains of press hardening, also including pre- and post-processing in addition to the actual forming and quenching process. Investigations on direct contact heating technology show new prospects regarding fast and flexible austenitization of blanks at compact device dimensions. By applying high speed impact cutting (HSIC) for trimming of press hardened parts, an alternative technology is available to substitute the slow and energy-intensive laser trimming in today’s press hardening lines. Combined with stroke-to-stroke control based on measuring of process-relevant parameters, a readjustment of the production line is possible in order to produce each part with individual, optimal process parameters to realize zero defect production of property-graded press hardened components with constant high part quality. Significant research in the field of press hardening was carried out at Fraunhofer Institute for Machine Tools and Forming Technology IWU, in the hot forming model process chain which enables the running of experiments under conditions similar to industrial scales. All practical tests were prepared by design of experiments and assisted by thermo-mechanical FE simulations.


2019 ◽  
Vol 827 ◽  
pp. 488-492
Author(s):  
Kazuto Tanaka ◽  
Daiki Kugimoto ◽  
Tsutao Katayama

Transportation sector is required to reduce CO2 emissions as environmental problems are becoming more serious. Carbon fibre reinforced thermoplastic (CFRTP) are expected to be applied to the structural parts of automobiles and aircrafts because of their superior mechanical properties such as high specific strength, high specific stiffness and high recyclability. One of the problems in using CFRTP for the structural parts is heat resistance, and it is necessary to clarify the mechanical properties under their service environmental temperature. The tensile strength of CFRTP at high temperatures decreases with temperature rise. The fibre matrix interfacial shear strength is reported to be improved by grafting of carbon nanotubes (CNTs) on the surface of carbon fibre. In this study, in order to clarify the effects of temperature on the fibre matrix interfacial shear strength of CNTs grafted carbon fibre reinforced PPS resin, single fibre pull-out test was conducted. While the interfacial shear strength of CNT grafted-CF/PPS is higher than that of As-received-CF/PPS at 25 °C, no significant difference was found in the interfacial shear strength of As-received-CF/PPS and CNT grafted-CF/PPS at 80 °C.


2020 ◽  
Vol 62 (6) ◽  
pp. 573-583
Author(s):  
Andreas Lutz ◽  
Lukas Huber ◽  
Claus Emmelmann

Abstract This paper investigates the mechanical properties of two selective lasermelted aluminum alloys (AlSi10Mg and AlSi3.5Mg2.5) under high strain-rate uniaxial loading. Accelerated tensile tests were performed under various strain-rate decades (.ε = 4.7 × 10-3 up to 250 s-1) to determine the load-speed-specific changes in the mechanical properties. As a result of the primary laser-based shaping process, the microstructure and characteristics change was entirely comparable to the conventional manufacturing of aluminum parts. Based on an ultrafine microstructure, parts achieve high strength along with a brittle fracture behavior. Modifications for applications requiring high ductility (e. g., the crashloaded structural parts of a car body) can be made through specific heat treatment strategies. The experimental results demonstrate that a significant increase in ductility (factors 4-5) with a concurrent decrease in strength can be obtained compared to the as-built state. In high-speed tests, the tensile strength of both alloys rose strain-rate dependently around 10 %, and the elongation at break increased relatively by ≈ 15 % for AlSi10Mg and ≈ 10 % for AlSi3.5Mg2.5.


2015 ◽  
Vol 809-810 ◽  
pp. 578-583
Author(s):  
Radu Cristian Crăciun ◽  
Sergiu Stanciu ◽  
Ramona Cimpoeşu ◽  
Florin Săndulache ◽  
Adela Ioana Ursanu Dragos ◽  
...  

Bumper beam absorbs the accidental kinetic energy by deflection in low-speed impact and by deformation in high-speed impact. Based on the last years necessity of lighter materials and safer usage of vehicles we try to come with a new class of materials for bumper systems. Analyze of metallic materials is cheaper when the analyze take place on a computer avoiding the metallic loss or energy consume. We present few results obtained in Catia software about the behavior of some metallic materials under external solicitations in function of the mechanical properties of metallic elements, geometry of the element, restrains and solicitation points. Shape memory alloy are smart materials that can use the external mechanical energy damping to thermal energy in bumper applications. In martensite to austenite domain we observe an increase of damping mechanical capacity with possible applications in bumper systems.


Alloy Digest ◽  
1999 ◽  
Vol 48 (12) ◽  

Abstract Kaiser Aluminum Alloy 7049 has high mechanical properties and good machinability. The alloy offers a resistance to stress-corrosion cracking and is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fatigue. It also includes information on forming, heat treating, machining, and surface treatment. Filing Code: AL-365. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Kaiser Aluminum Alloy 7050 has very high mechanical properties including tensile strength, high fracture toughness, and a high resistance to exfoliation and stress-corrosion cracking. The alloy is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: AL-366. Producer or source: Tennalum, A Division of Kaiser Aluminum.


2020 ◽  
Vol 02 ◽  
Author(s):  
Laurel Stringer ◽  
Sarah Malley ◽  
Darrell M. Hutto ◽  
Jason A. Griggs ◽  
Susana M. Salazar Marocho

Background: The most common approach to remove yttria stabilized zirconia (YSZ) fixed-dental prostheses (FDPs) is by means of diamond burs attached to a high-speed handpiece. This process is time-consuming and destructive. The use of lasers over mechanical instrumentation for removal of FDPs can lead to efficient and predictable restoration retrievability. However, the heat produced might damage the tooth pulp (>42˚C). Objective: The purpose of this study was to determine the maximum temperature (T) reached during the use of different settings of the erbium, chromium:yttrium-scandium-gallium-garnet Er,Cr:YSGG laser through a YSZ ceramic. Methods: YSZ slices (1 mm thick) were assigned into 7 groups. For the control group, a diamond bur was used to cut a 1 mm groove into the YSZ slices. For the 6 experimental groups, the laser was operated at a constant combination of 33% water and 66% air during 30 s with two different power settings (W) at three frequencies (PPS), as follows (W/PPS): 2.5/20, 2.5/30, 2.5/45, 4.5/20, 4.5/30, 4.5/45. The T through the YSZ slice was recorded in degrees Celsius by using a digital thermometer with a K thermocouple. Results: The median T of the control group was 26.5˚C. The use of 4.5 W resulted in the median T (˚C) of 44.2 at 20 PPS, 53.3 at 30 PPS, and 58.9 at 45 PPS, while 2.5 W showed 34.6, 31.6, and 25.0 at 20, 30, and 45 PPS, respectively. KruskalWallis one-way ANOVA showed that within each power setting, the T was similar. The high power and lowest frequency (4.5/20) showed no significant difference from the 2.5 W settings and the control group. Conclusion: The lower power setting (2.5 W) is a potential method for the use of the Er,Cr:YSGG laser to debond YSZ structures. The higher power (4.5 W) with high frequencies (30 and 45 PPS) is unsuitable.


2014 ◽  
Vol 66 (4) ◽  
pp. 520-524 ◽  
Author(s):  
Serkan Büyükdoğan ◽  
Süleyman Gündüz ◽  
Mustafa Türkmen

Purpose – The paper aims to provide new observations about static strain ageing in aluminium (Al) alloys which are widely used in structural applications. Design/methodology/approach – The present work aims to provide theoretical and practical information to industries or researchers who may be interested in the effect of static strain ageing on mechanical properties of Al alloys. The data are sorted into the following sections: introduction, materials and experimental procedure, results and discussion and conclusions. Findings – Tensile strength, proof strength (0.2 per cent) and percentage elongation measurement were used to investigate the effect of strain ageing on the mechanical properties. Wear tests were performed by sliding the pin specimens, which were prepared from as-received, solution heat-treated, deformed and undeformed specimens after ageing, on high-speed tool steel (64 HRC). It is concluded that the variations in ageing time improved the strength and wear resistance of the 6063 Al alloy; however, a plastically deformed solution-treated alloy has higher strength and wear resistance than undeformed specimens for different ageing times at 180°C. Practical implications – A very useful source of information for industries using or planning to produce Al alloys. Originality/value – This paper fulfils an identified resource need and offers practical help to the industries.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1134
Author(s):  
Bo Seok Song ◽  
Jun Young Lee ◽  
Sun Hwa Jang ◽  
Wan-Gyu Hahm

High-speed melt spinning of thermotropic liquid crystalline polymer (TLCP) resin composed of 4-hydroxybenzoic acid (HBA) and 2-hydroxy-6-napthoic acid (HNA) monomers in a molar ratio of 73/27 was conducted to investigate the characteristic structure development of the fibers under industrial spinning conditions, and the obtained as-spun TLCP fibers were analyzed in detail. The tensile strength and modulus of the fibers increased with shear rate in nozzle hole, draft in spin-line and spinning temperature and exhibited the high values of approximately 1.1 and 63 GPa, respectively, comparable to those of industrial as-spun TLCP fibers, at a shear rate of 70,000 s−1 and a draft of 25. X-ray diffraction demonstrated that the mechanical properties of the fibers increased with the crystalline orientation factor (fc) and the fractions of highly oriented crystalline and non-crystalline anisotropic phases. The results of structure analysis indicated that a characteristic skin–core structure developed at high drafts (i.e., spinning velocity) and low spinning temperatures, which contributed to weakening the mechanical properties of the TLCP fibers. It is supposed that this heterogeneous structure in the cross-section of the fibers was induced by differences in the cooling rates of the skin and core of the fiber in the spin-line.


Sign in / Sign up

Export Citation Format

Share Document