Variations in the mechanical properties of bionanocomposites by water absorption

Author(s):  
SS Rana ◽  
MK Gupta

The present study aims to investigate the water absorption property and its effect on the mechanical properties (i.e. tensile, flexural, and impact) of bionanocomposites. The epoxy-based bionanocomposites were prepared by reinforcing the epoxy with 1, 2, 3, 4, and 5 wt% of nanocellulose using in situ polymerization method. The maximum water uptake by bionanocomposites was measured; however, the water absorption behavior was not found in accordance with Fickian’s diffusion model. In the present study, very low water absorption in the range of 0.17–0.34% was offered by bionanocomposites. The results obtained from the present experimental study suggested that there were a maximum degradation of 14.96% in tensile strength, 26.44% in flexural strength, and 55.66% in impact strength for bionanocomposites reinforced with 5 wt% of nanocellulose by water uptake.

2014 ◽  
Vol 1015 ◽  
pp. 381-384
Author(s):  
Li Liu ◽  
Li Hai Cai ◽  
Dan Liu ◽  
Jun Xu ◽  
Bao Hua Guo

The poly (butylene succinate) (PBS) and 3 wt% attapulgite (ATP) reinforced PBS/ATP nanocomposites with 1,6-hexanediol were fabricated using an in situ polymerization method. The crystallization behaviors indicated that ATP had effectively acted as nucleating agent, resulting in the enhancement on the crystallization temperature. The SEM results showed a superior interfacial linkage between ATP and PBS. Also, ATP could disperse as a single fiber and embed in the polymer matrix, which resulted in the improved mechanical properties.


2014 ◽  
Vol 584-586 ◽  
pp. 1188-1191
Author(s):  
Peng Fei Li ◽  
Xian Chun Zheng ◽  
Ling Feng Ji

This paper test the strength intensity,water absorption property of 10 baking—free bricks using the matrix cementing component in waster concrete as the material,studies the effect of m~ing ratio and maintenance time on pmpe~y to get the best mKing ratio of this kind of brick.It also analyzes the intension resources of this brick.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 302 ◽  
Author(s):  
Boxiang Wang ◽  
Song Zhang ◽  
Yifan Wang ◽  
Bo Si ◽  
Dehong Cheng ◽  
...  

At present, Antheraea pernyi silk fibroin (ASF) has attracted research efforts to investigate it as a raw material for fabrication of biomedical devices because of its superior cytocompatibility. Nevertheless, native ASF is not easily processed into a hydrogel without any crosslinking agent, and a single hydrogel shows poor mechanical properties. In this paper, a series of ASF/poly (N-isopropylacrylamide) (PNIPAAm) composite hydrogels with different ASF contents were manufactured by a simple in situ polymerization method without any crosslinking agent. Meanwhile, the structures, morphologies and thermal properties of composite hydrogels were investigated by XRD, FTIR, SEM, DSC and TGA, respectively. The results indicate that the secondary structure of silk in the composite hydrogel can be controlled by changing the ASF content and the thermal stability of composite hydrogels is enhanced with an increase in crystalline structure. The composite hydrogels showed similar lower critical solution temperatures (LCST) at about 32 °C, which matched well with the LCST of PNIPAAm. Finally, the obtained thermosensitive composite hydrogels exhibited enhanced mechanical properties, which can be tuned by varying the content of ASF. This strategy to prepare an ASF-based responsive composite hydrogel with enhanced mechanical properties represents a valuable route for developing the fields of ASF, and, furthermore, their attractive applications can meet the needs of different biomaterial fields.


RSC Advances ◽  
2016 ◽  
Vol 6 (55) ◽  
pp. 49448-49458 ◽  
Author(s):  
Jiaojiao Ma ◽  
Ying Li ◽  
Xiande Yin ◽  
Yu Xu ◽  
Jia Yue ◽  
...  

A novel and one-stepin situpolymerization method for preparing the poly(vinyl alcohol) (PVA)/graphene oxide (GO) nanocomposites.


Author(s):  
SS Rana ◽  
MK Gupta

The present study aims to fabricate the epoxy-based bionanocomposites reinforced with hemp nanocellulose and the evaluation of their mechanical, thermal and dynamic mechanical properties. Nanocellulose from hemp fibres was isolated via the chemo-mechanical method and its bionanocomposites were prepared using the in situ polymerization method. Although many researchers have reported studies on the preparation and characterization of bionanocomposites however, studies on the mechanical, thermal, and dynamic mechanical properties of epoxy-based bionanocomposites reinforced with hemp nanocellulose are still unreported. The mechanical properties (i.e. tensile, flexural, hardness, and impact) and dynamic mechanical properties (i.e. glass transition temperature, damping behaviour, storage, and loss modulus) of the developed bionanocomposites were investigated. Further, the crystalline behaviour and thermal stability were also studied using the X-ray diffraction and thermogravimetric analysis techniques, respectively. The results revealed that an addition of nanocellulose considerably improved the mechanical, thermal, and viscoelastic properties of the bionanocomposites. As much as 52.17%, 48.17%, 89.08%, and 15.67% improvements in the tensile strength, flexural strength, impact strength, and hardness, respectively, for the 2 wt.% nanocellulose composites were found over the epoxy matrix.


2022 ◽  
pp. 131-142
Author(s):  
Ahmad A. Khalaf ◽  
Salwa A. Abed ◽  
Saad Sami Alkhfaji ◽  
Mudhar A. Al-Obaidi ◽  
Muammel M. Hanon

Recently, there has been a tendency for scientific studies to deal with natural materials as fillers and reinforcement for polymer composites, which are used in many different applications due to their environmentally friendly properties when compared to synthetic materials. The current study aims to preserve the environment by dealing with natural materials and their influence on the mechanical properties and water absorption property of the polymer composites. In this study, epoxy composites were produced from local natural sourced non-hazardous raw natural materials using grey relational analysis (GRG). The materials used for fabrication include micro-filler of pollen palm 50 μm, seashell 75 μm and epoxy resin. Nine different composites were prepared using pollen palm and seashell as reinforcement material by varying the wt % of the micro-filler. Rule of the mixture was used for formulation and wt % of (0.5, 1 and 1.5) % reinforcement and 99.5, 99 and 98.5 % epoxy (binder) were used for composites. Grey relational analysis was conducted in order to scale the multi-response performance to a single response. The results indicate that optimum performance can be achieved with the addition of 1.5 wt % micro-filler of seashell, which achieved the first rank, while the second rank achieved by 0.5 wt % micro-filler of palm pollen and seashell when compared to other composites. The addition of micro-fillers has improved greatly the mechanical properties of epoxy composites. The loading of micro-fillers has influenced the water absorption property of composites based epoxy in ascending order


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1261
Author(s):  
Catarina S. P. Borges ◽  
Alireza Akhavan-Safar ◽  
Eduardo A. S. Marques ◽  
Ricardo J. C. Carbas ◽  
Christoph Ueffing ◽  
...  

Short fiber reinforced polymers are widely used in the construction of electronic housings, where they are often exposed to harsh environmental conditions. The main purpose of this work is the in-depth study and characterization of the water uptake behavior of PBT-GF30 (polybutylene terephthalate with 30% of short glass fiber)as well as its consequent effect on the mechanical properties of the material. Further analysis was conducted to determine at which temperature range PBT-GF30 starts experiencing chemical changes. The influence of testing procedures and conditions on the evaluation of these effects was analyzed, also drawing comparisons with previous studies. The water absorption behavior was studied through gravimetric tests at 35, 70, and 130 °C. Fiber-free PBT was also studied at 35 °C for comparison purposes. The effect of water and temperature on the mechanical properties was analyzed through bulk tensile tests. The material was tested for the three temperatures in the as-supplied state (without drying or aging). Afterwards, PBT-GF30 was tested at room temperature following water immersion at the three temperatures. Chemical changes in the material were also analyzed through Fourier-transform infrared spectroscopy (FTIR). It was concluded that the water diffusion behavior is Fickian and that PBT absorbs more water than PBT-GF30 but at a slightly higher rate. However, temperature was found to have a more significant influence on the rate of water diffusion of PBT-GF30 than fiber content did. Temperature has a significant influence on the mechanical properties of the material. Humidity contributes to a slight drop in stiffness and strength, not showing a clear dependence on water uptake. This decrease in mechanical properties occurs due to the relaxation of the polymeric chain promoted by water ingress. Between 80 and 85 °C, after water immersion, the FTIR profile of the material changes, which suggests chemical changes in the PBT. The water absorption was simulated through heat transfer analogy with good results. From the developed numerical simulation, the minimum plate size to maintain the water ingress unidirectional was 30 mm, which was validated experimentally.


2019 ◽  
Vol 361 ◽  
pp. 897-907 ◽  
Author(s):  
Jingchun Lv ◽  
Peiwen Zhou ◽  
Linping Zhang ◽  
Yi Zhong ◽  
Xiaofeng Sui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document