Combustion modelling of turbulent jet ignition in a divided combustion chamber

2021 ◽  
pp. 146808742110371
Author(s):  
Mattia Olcuire ◽  
Clara Iacovano ◽  
Alessandro d’Adamo ◽  
Sebastiano Breda ◽  
Tommaso Lucchini ◽  
...  

Turbulent jet ignition is seen as one of the most promising strategies to achieve stable lean-burn operation in modern spark-ignition engines thanks to its ability to promote rapid combustion. A nearly stoichiometric mixture is ignited in a small-volume pre-chamber, following which multiple hot turbulent jets are discharged in the main chamber to initiate combustion. In the present work, a detailed computational investigation on the turbulent combustion regime of premixed rich propane/air mixture in a quiescent divided chamber vessel is carried out, to study the characteristics of the jet flame without the uncertainties in mixing and turbulent conditions typical of real-engine operations. In particular, the paper investigates the dependency of flame propagation on nozzle diameter (4, 6, 8, 12 and 14 mm) and pre-chamber/main-chamber volume ratio (10% and 20%); CFD results are compared to the experimental outcomes. Results show that the combustion regime in the quiescent pre-chamber follows a well-stirred reaction mode, rendering the limitation in using conventional flamelet combustion models. Furthermore, due to the very high turbulence levels generated by the outflowing reacting jets, also the main chamber combustion develops in a well-stirred reactor type, confirming the need for a kinetics-based approach to combustion modelling. However, the picture is complicated by thickened flamelet conditions possibly being verified for some geometrical variations (nozzle diameter and pre-chamber volume). The results show a general good alignment with the experimental data in terms of both jet phasing and combustion duration, offering a renewed guideline for combustion simulations under quiescent and low Damköhler number conditions.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2226
Author(s):  
Jiaying Pan ◽  
Yu He ◽  
Tao Li ◽  
Haiqiao Wei ◽  
Lei Wang ◽  
...  

Turbulent jet ignition technology can significantly improve lean combustion stability and suppress engine knocking. However, the narrow jet channel between the pre-chamber and the main chamber leads to some difficulties in heat exchange, which significantly affects combustion performance and mechanical component lifetime. To clarify the effect of temperature conditions on combustion evolutions of turbulent jet ignition, direct numerical simulations with detailed chemical kinetics were employed under engine-relevant conditions. The flame propagation in the pre-chamber and the early-stage turbulent jet ignition in the main chamber were investigated. The results show that depending on temperature conditions, two types of flame configuration can be identified in the main chamber, i.e., the normal turbulent jet flame propagation and the spherical flame propagation, and the latter is closely associated with pressure wave disturbance. Under low-temperature conditions, the cold jet stoichiometric mixtures and the vortexes induced by the jet flow determine the early-stage flame development in the main chamber. Under intermediate temperature conditions, pre-flame heat release and leading pressure waves are induced in the jet channel, which can be regarded as a transition of different combustion modes. Whereas under high-temperature conditions, irregular auto-ignition events start to occur, and spherical flame fronts are induced in the main chamber, behaving faster flame propagation.


Author(s):  
Khalifa Bureshaid ◽  
Dengquan Feng ◽  
Hua Zhao ◽  
Mike Bunce

Turbulent jet ignition is a pre-chamber ignition system for an otherwise standard gasoline spark ignition engine. Turbulent jet ignition works by injecting chemical active turbulent jets to initiate combustion in a premixed fuel/air mixture. The main advantage of turbulent jet ignition is its ability to ignite and burn completely very lean fuel/air mixtures in the main chamber charge. This occurs with a very fast burn rate due to the widely distributed ignition sites that consume the main charge rapidly. Rapid combustion of lean mixtures leads to lower exhaust emissions due to more complete combustion at lower combustion temperature. The purpose of the paper is to study the combustion characteristics of gasoline, ethanol, and wet ethanol when operated with the pre-chamber combustion system and the ability of the pre-chamber ignition to extend the lean-burn limits of such fuels. The combustion and heat release process was analyzed and exhaust emissions measured. Results show that the effect of turbulent jet ignition system on the lean-burn limit and exhaust emissions varied with fuels. The lean limit was extended by using fueled pre-chamber furthest, to λ = 1.71 with gasoline, followed by λ = 1.77 with wet ethanol and λ = 1.9 with ethanol. NOx emissions were significantly reduced with increased lambda for each fuel under stable combustion conditions. For ethanol, at maximum lean limit lambda 1.9, the NOx emissions were almost negligible due to lower combustion temperature.


Author(s):  
Stephan Schlimpert ◽  
Seong Ryong Koh ◽  
Antje Feldhusen ◽  
Benedikt Roidl ◽  
Matthias H. Meinke ◽  
...  

2015 ◽  
Vol 19 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Amir Mardani ◽  
Sadegh Tabejamaat

In this paper, turbulent non-premixed CH4+H2 jet flame issuing into a hot and diluted co-flow air is studied numerically. This flame is under condition of the moderate or intense low-oxygen dilution (MILD) combustion regime and related to published experimental data. The modelling is carried out using the EDC model to describe turbulence-chemistry interaction. The DRM-22 reduced mechanism and the GRI2.11 full mechanism are used to represent the chemical reactions of H2/methane jet flame. The flame structure for various O2 levels and jet Reynolds numbers are investigated. The results show that the flame entrainment increases by a decrease in O2 concentration at air side or jet Reynolds number. Local extinction is seen in the upstream and close to the fuel injection nozzle at the shear layer. It leads to the higher flame entertainment in MILD regime. The turbulence kinetic energy decay at centre line of jet decreases by an increase in O2 concentration at hot Co-flow. Also, increase in jet Reynolds or O2 level increases the mixing rate and rate of reactions.


2011 ◽  
Vol 89 (2) ◽  
pp. 295-309 ◽  
Author(s):  
José Salvador Ochoa ◽  
Alberto Sánchez-Insa ◽  
Norberto Fueyo

2019 ◽  
Vol 176 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Wojciech BUESCHKE ◽  
Maciej SKOWRON ◽  
Krzysztof WISŁOCKI ◽  
Filip SZWAJCA

The increase in ignitability consist a main aim of implementation of the turbulent jet ignition (TJI) in relation to the combustion of diluted charges. Such an ignition system has been introduced to the lean-burn CNG engine in the scope of GasOn-Project (Gas Only Internal Combustion Engines). In this study the impact of TJI application on the main combustion indexes has been investigated using RCM and analyzed on the bases of the indicating and optical observations data. The images have been recorded using LaVision HSS5 camera and post-processed with Davis software. Second part of the study based on indicating measurements consist the analysis of combustion regarding the variation in the geometry of pre-chamber nozzles. It has been noted, that combustion with TJI indicates signi- ficantly bigger flame luminescence and simultaneously – faster flame front development, than the combustion initiated with conventional SI. The positive impact of nozzles angular position on engine operational data has been found in the static charge movement conditions, regarding the combustion stability.


2019 ◽  
Vol 176 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Ireneusz PIELECHA ◽  
Wojciech BUESCHKE ◽  
Maciej SKOWRON ◽  
Łukasz FIEDKIEWICZ ◽  
Filip SZWAJCA ◽  
...  

Searching for further reduction of fuel consumption simultaneously with the reduction of toxic compounds emission new systems for lean-mixture combustion for SI engines are being discussed by many manufacturers. Within the European GasOn-Project (Gas Only Internal Combustion Engines) the two-stage combustion and Turbulent Jet Ignition concept for CNG-fuelled high speed engine has been proposed and thoroughly investigated where the reduction of gas consumption and increasing of engine efficiency together with the reduction of emission, especially CO2 was expected. In the investigated cases the lean-burn combustion process was conducted with selection of the most effective pre-combustion chamber. The experimental investigations have been performed on single-cylinder AVL5804 research engine, which has been modified to SI and CNG fuelling. For the analysis of the thermodynamic, operational and emission indexes very advanced equipment has been applied. Based on the measuring results achieved for different pre-chamber config-urations the extended methodology of polioptimization by pre-chamber selection and the shape of main chamber in the piston crown for proposed combustion system has been described and discussed. The results of the three versions of the optimization methods have been comparatively summarized in conclusions.


2021 ◽  
Author(s):  
Aravind Chandh ◽  
Shivam Patel ◽  
Oleksandr Bibik ◽  
Subodh Adhikari ◽  
David Wu ◽  
...  

Abstract This paper presents measurements of 10 kHz OH planar laser induced fluorescence (PLIF) with an objective to study the interaction of effusion cooling with the flame and hot combustion products in the liquid fueled combustor. The combustor rig is a single sector representation a rich-burn/quick-quench/lean-burn (RQL) configuration. It consists of a swirl nozzle, dilution, and effusion jets. The rig is operated under realistic aircraft conditions, including elevated combustor inlet temperature, and elevated pressure. The PLIF laser sheet was arranged perpendicular and parallel to the liner at distinct liner locations. Parametric variations of important parameters, namely equivalence ratio, and effusion cooling air blowing ratio are conducted to investigate their effect on flame-effusion jet interactions. The PLIF images were analyzed using several data reduction techniques to de-noise the images and identify patterns in the effusion jet-flame interactions. Results show that the effusion jets are highly unsteady, interacting strongly with the turbulent flame from the swirl nozzle and the dilution jets. This work is an extension of recent effusion film mixing studies that were performed with acetone PLIF under non-reacting conditions.


2021 ◽  
Author(s):  
Vincent McDonell ◽  
Elliot Sullivan-Lewis ◽  
Alireza Kalantari ◽  
Priyank Saxena

Sign in / Sign up

Export Citation Format

Share Document