scholarly journals Comparative study on combustion characteristics of lean premixed CH4/air mixtures in RCM using spark ignition and turbulent jet ignition in terms of orifices angular position change

2019 ◽  
Vol 176 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Wojciech BUESCHKE ◽  
Maciej SKOWRON ◽  
Krzysztof WISŁOCKI ◽  
Filip SZWAJCA

The increase in ignitability consist a main aim of implementation of the turbulent jet ignition (TJI) in relation to the combustion of diluted charges. Such an ignition system has been introduced to the lean-burn CNG engine in the scope of GasOn-Project (Gas Only Internal Combustion Engines). In this study the impact of TJI application on the main combustion indexes has been investigated using RCM and analyzed on the bases of the indicating and optical observations data. The images have been recorded using LaVision HSS5 camera and post-processed with Davis software. Second part of the study based on indicating measurements consist the analysis of combustion regarding the variation in the geometry of pre-chamber nozzles. It has been noted, that combustion with TJI indicates signi- ficantly bigger flame luminescence and simultaneously – faster flame front development, than the combustion initiated with conventional SI. The positive impact of nozzles angular position on engine operational data has been found in the static charge movement conditions, regarding the combustion stability.

2019 ◽  
Vol 176 (1) ◽  
pp. 16-26 ◽  
Author(s):  
Ireneusz PIELECHA ◽  
Wojciech BUESCHKE ◽  
Maciej SKOWRON ◽  
Łukasz FIEDKIEWICZ ◽  
Filip SZWAJCA ◽  
...  

Searching for further reduction of fuel consumption simultaneously with the reduction of toxic compounds emission new systems for lean-mixture combustion for SI engines are being discussed by many manufacturers. Within the European GasOn-Project (Gas Only Internal Combustion Engines) the two-stage combustion and Turbulent Jet Ignition concept for CNG-fuelled high speed engine has been proposed and thoroughly investigated where the reduction of gas consumption and increasing of engine efficiency together with the reduction of emission, especially CO2 was expected. In the investigated cases the lean-burn combustion process was conducted with selection of the most effective pre-combustion chamber. The experimental investigations have been performed on single-cylinder AVL5804 research engine, which has been modified to SI and CNG fuelling. For the analysis of the thermodynamic, operational and emission indexes very advanced equipment has been applied. Based on the measuring results achieved for different pre-chamber config-urations the extended methodology of polioptimization by pre-chamber selection and the shape of main chamber in the piston crown for proposed combustion system has been described and discussed. The results of the three versions of the optimization methods have been comparatively summarized in conclusions.


2021 ◽  
Vol 11 (13) ◽  
pp. 6035
Author(s):  
Luigi Teodosio ◽  
Luca Marchitto ◽  
Cinzia Tornatore ◽  
Fabio Bozza ◽  
Gerardo Valentino

Combustion stability, engine efficiency and emissions in a multi-cylinder spark-ignition internal combustion engines can be improved through the advanced control and optimization of individual cylinder operation. In this work, experimental and numerical analyses were carried out on a twin-cylinder turbocharged port fuel injection (PFI) spark-ignition engine to evaluate the influence of cylinder-by-cylinder variation on performance and pollutant emissions. In a first stage, experimental tests are performed on the engine at different speed/load points and exhaust gas recirculation (EGR) rates, covering operating conditions typical of Worldwide harmonized Light-duty vehicles Test Cycle (WLTC). Measurements highlighted relevant differences in combustion evolution between cylinders, mainly due to non-uniform effective in-cylinder air/fuel ratio. Experimental data are utilized to validate a one-dimensional (1D) engine model, enhanced with user-defined sub-models of turbulence, combustion, heat transfer and noxious emissions. The model shows a satisfactory accuracy in reproducing the combustion evolution in each cylinder and the temperature of exhaust gases at turbine inlet. The pollutant species (HC, CO and NOx) predicted by the model show a good agreement with the ones measured at engine exhaust. Furthermore, the impact of cylinder-by-cylinder variation on gaseous emissions is also satisfactorily reproduced. The novel contribution of present work mainly consists in the extended numerical/experimental analysis on the effects of cylinder-by-cylinder variation on performance and emissions of spark-ignition engines. The proposed numerical methodology represents a valuable tool to support the engine design and calibration, with the aim to improve both performance and emissions.


Author(s):  
A. Manivannan ◽  
R. Ramprabhu

In the development of internal combustion engines, there has been a continuous effort to reduce fuel consumption and exhaust emissions. Lean combustion is a preferred concept for reducing exhaust emissions for meeting stringent emission standards. However lean combustion is associated with increased cycle-by-cycle combustion variation due to combustion instability. The combustion stability under lean mixture conditions could be improved through enhancement of flow characteristics. Effect of engine variables on lean combustion of Spark Ignition (SI) engine is presented, including combustion chamber and inlet port configuration, and ignition system. Use of pre-chamber for lean combustion is one of the feasible method to achieve stable ignition and quick flame propagation. This paper highlights and compares status of various research works carried out in the area of lean burn engines. A critical analysis of reported experimental data is presented in order to substantiate use of lean combustion in SI engine.


Author(s):  
K. Dean Edwards ◽  
Robert M. Wagner ◽  
Timothy J. Theiss ◽  
C. Stuart Daw

Dilute operation of internal combustion engines through lean fueling and/or high levels of exhaust gas recirculation (EGR) is frequently employed to increase fuel efficiency, reduce NOx emissions, and promote enhanced combustion modes such as HCCI. The maximum level of dilution is limited by the development of combustion instabilities that produce unacceptable levels of cycle-to-cycle combustion variability. These combustion instabilities are frequently stimulated by the nonlinear feedback associated with the residual and recirculated exhaust gases exchanged between successive cycles. However, with the application of adaptive control, it is possible to limit the severity of the combustion variability and regain efficiency and emission reduction benefits that would otherwise be lost. In order to better characterize the benefits of adaptive control, we have employed a two-zone phenomenological combustion model to simulate the onset of combustion instabilities under dilute operating conditions and illustrate the impact of these instabilities on emissions and fuel efficiency. The two-zone in-cylinder combustion model is coupled to a WAVE engine-simulation code, allowing rapid simulation of several hundred successive engine cycles with many external engine parametric effects included. By applying adaptive feedback control to the WAVE model, we demonstrate how mitigation of the extreme combustion events can result in improved efficiency and reduced emissions levels. We expect that this approach can be used to estimate the potential benefits of implementing adaptive control strategies on specific engine platforms to achieve further efficiency and emission-reduction gains.


2021 ◽  
Vol 6 ◽  
Author(s):  
Michael Bunce ◽  
Alasdair Cairns ◽  
Sai Krishna Pothuraju Subramanyam ◽  
Nathan Peters ◽  
Hugh Blaxill

Though there are multiple viable powertrain options available for the automotive sector, those that contain internal combustion engines will continue to account for the majority of global sales for the next several decades. It is therefore imperative to continue the pursuit of novel combustion concepts that produce efficiency levels significantly higher than those of current engines. Introducing high levels of dilution in spark ignited (SI) engines has consistently proven to produce an efficiency benefit compared to conventional stoichiometric engine operation. However, this combustion mode can present challenges for the ignition system. Pre-chamber jet ignition enables stable, highly dilute combustion by both increasing the ignition energy present in the system and distributing it throughout the combustion chamber. Previous work by the authors have shown that jet ignition produces 15–25% increases in thermal efficiency over baseline SI engines with only relatively minor changes to engine architecture. Lean combustion in general and jet ignition in particular represent fundamentally different engine operating modes compared to those of conventional stoichiometric SI engines. Therefore, there are some system sensitivities not present in stoichiometric engines that must be investigated in order to fully optimize the jet ignition system. Differing types and magnitudes of charge motion are incorporated in SI engines to aid with mixture preparation but the influence of charge motion over lean combustion performance, particularly in jet ignition engines, is less well understood. This study analyzes the impact that charge motion has on both pre-chamber and main chamber combustion. A 1.5 L 3-cylinder gasoline engine is outfitted with multiple intake port configurations producing varying magnitudes and types of charge motion. Pre-chamber and main chamber combustion stability and other burn parameter responses are analyzed across multiple speeds and loads, including at critical operating points such as a catalyst heating condition. The results show that there is combustion sensitivity to charge motion, resulting in >1 percentage point spread in peak thermal efficiency for the configurations tested, and that this sensitivity manifests most significantly under low ignitability conditions such as heavy dilution. These results provide guidance for future system optimization of jet ignition engines.


Author(s):  
Jacob J. McFarland ◽  
Diana K. Grauer ◽  
Kirby S. Chapman

This paper presents an investigation into CO formation in large-bore two-stroke cycle (2SC) lean-burn engines. On March 5, 2009, the Environmental Protection Agency (EPA) proposed a new rule to addressing National Emission Standards for Hazardous Air Pollutants (HAP) for existing stationary reciprocating internal combustion engines. Specifically, the 2009 Proposed Rule identifies carbon monoxide (CO) as a surrogate for HAP and requires reductions in CO for 2SC lean-burn engines. This future promulgation has created the need for a comprehensive kinetic CO formation model. The CO model itself integrates equilibrium concentration values of CO with the CO concentration created later in the cycle from the dissociation of equilibrium CO2. The previously developed variable-geometry multi-cylinder Turbocharged-Reciprocating Engine Compressor Simulation (T-RECS) has been modified with a mechanism to model cycle-resolved CO formation using a calibrated kinetic reaction scheme. The simplified chemical kinetic CO reaction scheme has been tuned and validated with exhaust concentration data collected on a Cooper GMVC large-bore two-stroke cycle engine, and directly relates the impact of engine operating conditions and in-cylinder geometry.


Author(s):  
Jérôme Chérel ◽  
Jean-Marc Zaccardi ◽  
Bernard Bouteiller ◽  
Alain Allimant

Clean and highly efficient internal combustion engines will still be necessary in the future to meet the ambitious CO2 emissions reduction targets set for light-duty vehicles. The maximal efficiency of stoichiometric Spark-Ignited (SI) gasoline engines has been steadily increasing in recent years but remains limited by the important relative share of cooling losses. Low heat rejection engines using ceramic barrier coatings have been presented in the past but smart insulation coatings are gaining a renewed interest as a more promising way to further increase the engine maximal thermal efficiency. This article is highlighting some important effects of smart insulation coatings developed for lean-burn spark-ignited gasoline engines. Five different coatings with low heat conductivity and capacity are applied on aluminum engine parts with the atmospheric plasma spray technique and are tested with two different engines. The laser induced phosphorescence technique is firstly used in an optical single cylinder engine to quantify the thermal performance of these coatings in terms of temperature swing during combustion. A maximal increase in the piston surface temperature of around 100 °C is measured at low load, confirming thus the expected impact of the low heat conductivity and capacity, and suggesting thus a positive impact on fuel consumption. Thanks to the tests performed with a similar metal single cylinder engine, it is shown that the unburned hydrocarbon emissions can significantly increase by up to 25% if the open porosity on top of the coating is not properly sealed, while the surface roughness has no impact on these emissions. When applied on both the piston and the cylinder head, the optimized coating displays some distinct effects on the maximal heat release rate and NOx emissions, indicating that the thermal environment inside the combustion chamber is modified during combustion. Thanks to the temperature swing between cold and hot engine phases the volumetric efficiency can also be kept constant. However, no increase in efficiency can be measured with this optimized coating which suggests that the heat balance is not affected only by the reduction in the temperature differential between the walls and the gas.


VASA ◽  
2019 ◽  
Vol 48 (3) ◽  
pp. 262-269 ◽  
Author(s):  
Christian-Alexander Behrendt ◽  
Tilo Kölbel ◽  
Thea Schwaneberg ◽  
Holger Diener ◽  
Ralf Hohnhold ◽  
...  

Abstract. Background: Worldwide prevalence of peripheral artery disease (PAD) is increasing and peripheral vascular intervention (PVI) has become the primary invasive treatment. There is evidence that multidisciplinary team decision-making (MTD) has an impact on in-hospital outcomes. This study aims to depict practice patterns and time changes regarding MTD of different medical specialties. Methods: This is a retrospective cross-sectional study design. 20,748 invasive, percutaneous PVI of PAD conducted in the metropolitan area of Hamburg (Germany) were consecutively collected between January 2004 and December 2014. Results: MTD prior to PVI was associated with lower odds of early unsuccessful termination of the procedures (Odds Ratio 0.662, p < 0.001). The proportion of MTD decreased over the study period (30.9 % until 2009 vs. 16.6 % from 2010, p < 0.001) while rates of critical limb-threatening ischemia (34.5 % vs. 42.1 %), patients´ age (70 vs. 72 years), PVI below-the-knee (BTK) (13.2 % vs. 22.4 %), and rates of severe TASC C/D lesions BTK (43.2 % vs. 54.2 %) increased (all p < 0.001). Utilization of MTD was different between medical specialties with lowest frequency in procedures performed by internists when compared to other medical specialties (7.1 % vs. 25.7 %, p < 0.001). Conclusions: MTD prior to PVI is associated with technical success of the procedure. Nonetheless, rates of MTD prior to PVI are decreasing during the study period. Future studies should address the impact of multidisciplinary vascular teams on long-term outcomes.


2020 ◽  
pp. 23-40
Author(s):  
I. V. Prilepskiy

Based on cross-country panel regressions, the paper analyzes the impact of external currency exposures on monetary policy, exchange rate regime and capital controls. It is determined that positive net external position (which, e.g., is the case for Russia) is associated with a higher degree of monetary policy autonomy, i.e. the national key interest rate is less responsive to Fed/ECB policy and exchange rate fluctuations. Therefore, the risks of cross-country synchronization of financial cycles are reduced, while central banks are able to place a larger emphasis on their price stability mandates. Significant positive impact of net external currency exposure on exchange rate flexibility and financial account liberalization is only found in the context of static models. This is probably due to the two-way links between incentives for external assets/liabilities accumulation and these macroeconomic policy tools.


2019 ◽  
pp. 109-123
Author(s):  
I. E. Limonov ◽  
M. V. Nesena

The purpose of this study is to evaluate the impact of public investment programs on the socio-economic development of territories. As a case, the federal target programs for the development of regions and investment programs of the financial development institution — Vnesheconombank, designed to solve the problems of regional development are considered. The impact of the public interventions were evaluated by the “difference in differences” method using Bayesian modeling. The results of the evaluation suggest the positive impact of federal target programs on the total factor productivity of regions and on innovation; and that regional investment programs of Vnesheconombank are improving the export activity. All of the investments considered are likely to have contributed to the reduction of unemployment, but their implementation has been accompanied by an increase in social inequality.


Sign in / Sign up

Export Citation Format

Share Document