Recyclable Nylon Reinforced HDPE Composites: Effect of the Fibre Diameter

2007 ◽  
Vol 23 (3) ◽  
pp. 153-167
Author(s):  
Thomas N. Abraham ◽  
K.E. George

A commercial grade of high-density polyethylene (HDPE) reinforced with nylon 6 fibres of three diameters at levels up to 30 wt% HDPE. The addition of the fibres resulted in improvements in mechanical properties such as tensile strength and flexural strength. Fibres having the least diameter gave the maximum improvement in mechanical properties. Attempts were made to improve the interfacial adhesion between the fibres and the matrix by grafting the matrix with maleic anhydride and also with styrene maleic anhydride. The mechanical properties showed significant improvements as a result of these modifications. The HDPE/nylon composites/blends obtained by recycling the composites also show good mechanical properties.

2005 ◽  
Vol 21 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Thomas N Abraham ◽  
K.E. George ◽  
Ton. Peijs

A commercial grade of polypropylene matrix reinforced with waste polyamide (nylon 6) fibres of two diameters at levels up to 40wt% (100 polypropylene + 40 polyamide) was studied. Smaller diameter fibres showed better mechanical properties than larger diameter ones. Attempts were made to improve the interfacial adhesion between the fibres and the matrix by grafting with maleic anhydride and with also styrene maleic anhydride. The mechanical properties showed significant improvements as a result of these modifications. Thermal stability was also marginally improved. These composites could be easily recycled by processing them above the melting point of the reinforcing fibres.


Author(s):  
Abdarazag Hassan ◽  
J. G. Alotaibi ◽  
A. Shalwan ◽  
B. F. Yousif

This chapter addresses the proposal of fragmentation test and its simulation using ANSYS software owing to understand the interfacial adhesion of natural fibre with synthetic matrix. Date palm fibres and epoxy materials are selected for the study. The influence of NaOH concentration and fibre diameter on the interfacial adhesion of the fibre with the epoxy are studied. The results indicated that the addition of the fibre to the matrix significantly improved the mechanical properties of the composites. However, an optimum value for the chemical concentration and the fibre diameters should be considered in developing such materials. High NaOH concentration deteriorates the tensile strength of the fibre. Meanwhile, low NaOH concentration exhibits poor interfacial adhesion.


2011 ◽  
Vol 380 ◽  
pp. 290-293
Author(s):  
Bing Tao Wang ◽  
Ping Zhang ◽  
De Gao

In situ melt copolycondensation was proposed to prepare biodegradable copolyester nanocomposites based on degradable components poly(L-lactic acid) (PLA), rigid segments poly(butylene terephthalate) (PBT), and nanoparticles polyhedral oligomeric silsesquioxanes (POSS). The morphologies and dispersions of two POSS nanoparticles (POSS-NH2 and POSS-PEG) in the copolyester PLABT matrix and their effects on the mechanical properties were investigated. The results demonstrated that the morphologies and dispersions of POSS-NH2 and POSS-PEG showed quite different characteristics. POSS-PEG took better dispersion in the PLABT, while POSS-NH2 had poor dispersions and formed crystalline microaggregates. Due to the good dispersion and strong interfacial adhesion of POSS-PEG with the matrix, the tensile strength and Young’s modulus were greatly improved from 6.4 and 9.6 MPa for neat PLABT up to 11.2 and 70.7 MPa for PLABT/POSS-PEG nanocomposite. Moreover, the incorporation of POSS-PEG could impart macromolecular chains good flexibility and improve the mobility of the chains, so the the elongation at break of PLABT/POSS-PEG nanocomposite dramatically increased from 190 to 350 % compared with neat PLABT.


2014 ◽  
Vol 695 ◽  
pp. 592-595
Author(s):  
M.P.M. Hanif ◽  
A.G. Supri ◽  
Firuz Zainuddin

The effect of maleic anhydride as a coupling agent on the tensile properties and morphology of recycled high density polyethylene/wood fiber (rHDPE/WF) composites were studied. rHDPE/WF composites with different wood fiber loading and the addition of maleic anhydride were prepared with Brabender Plasticorder at temperature of 160°C and rotor speed of 50 rpm. The result indicated that rHDPE/WFM composites with maleic anhydride exhibit higher tensile strength and modulus of elasticity than rHDPE/WF composites. rHDPE/WFM with maleic anhydride composites gave a better interfacial adhesion between the matrix and the fiber than rHDPE/WF composites as evidence using Scanning electron microscopy (SEM).


2015 ◽  
Vol 786 ◽  
pp. 8-12
Author(s):  
Tiam Ting Tee ◽  
Soo Tueen Bee ◽  
Tin Sin Lee ◽  
Chantara Thevy Ratnam ◽  
Haraveen Kaur Jogindar Singh ◽  
...  

In this work, the effect of aging duration time and copper (II) oxide loading level on the physico-mechanical properties of copper (II) oxide added LDPE composites have been investigated. The addition of copper (II) oxide particles in LDPE matrix has significantly decreased the tensile strength of LDPE composites. The occurrence of copper (II) oxide particles in LDPE matrix could reduce the matrix continuities of copper (II) oxide added LDPE composites by the agglomeration of copper (II) oxide particles. This could further cause the applied straining stress unable to be effectively transferred throughout the whole polymer matrix. The increasing of aging time duration up to 8 days has slightly reduced the tensile strength of all copper (II) oxide added LDPE composites. The increasing of copper (II) oxide loading level has significantly decreased the elongation at break of LDPE composites. This is due to poor interfacial adhesion between copper (II) oxide particles and LDPE matrix could further restrict the mobility of LDPE chains under straining stress and thus decrease the elongation at break.


2012 ◽  
Vol 501 ◽  
pp. 194-198 ◽  
Author(s):  
Mou'ad A. Tarawneh ◽  
Sahrim H. Ahmad ◽  
A.R. Shamsul Bahri ◽  
Yu Lih Jiun

This paper discusses the processing of a hybrid of TPNR-MWNTs-OMMT nanocomposites with different percentages of filler to determine the optimum mechanical properties of the hybrid nanocomposites. Three types of hybrid nanocomposites with various MWNTs-OMMT compositions (1%wt MWNTs+3%wt OMMT), (2%wt MWNTs+2%wt OMMT) and (3%wt MWNTs+1%wt OMMT) were prepared. The OMMT layers were found to be separated further with higher nanotubes content as exhibited by X-ray diffraction. The result of tensile test showed that tensile strength and Young's modulus increase in the presence of nanotubes and maximum value were obtained for the nanocomposites with highest nanotubes (3%wt) which increased about 33% and 36%, respectively compared with pure TPNR matrix. On other hand, the elongation at break considerably decreased with increasing the percentage of MWNTs. TEM micrographs revealed aspect ratio and fillers orientation in the TPNR matrix also promoted strongly to interfacial adhesion between fillers and the matrix which contributed significantly to the improvement of the mechanical properties


2015 ◽  
Vol 659 ◽  
pp. 463-467
Author(s):  
Sirirat Wacharawichanant ◽  
Parida Amorncharoen ◽  
Ratiwan Wannasirichoke

The effects of polypropylene-graft-maleic anhydride (PP-g-MA) compatibilizers on the morphology and mechanical properties of polyoxymethylene (POM)/acrylonitrile-butadiene-styrene (ABS) blends were investigated. Two types of compatibilizers, PP-g-MA with maleic anhydride 0.50 wt% (PP-g-MA1) and PP-g-MA with maleic anhydride 1.31 wt% (PP-g-MA2) were used to study the interfacial adhesion of POM and ABS. POM/ABS blends with and without PP-g-MA compatibilizer were prepared by an internal mixer and molded by compression molding. Scanning electron microscope (SEM) was used to investigate the morphology of ABS phase in POM matrix. The results found that POM/ABS blends clearly demonstrated a two phase separation of dispersed ABS phase and the POM matrix phase, and ABS phase dispersed as spherical domains in POM matrix in a range of ABS 10-30 wt% and the blends containing ABS more than 30 wt% showed the elongated structure of ABS phase. The addition of PP-g-MA could improve the interfacial adhesion of POM/ABS blends due to the domain size of ABS phase decreased after adding PP-g-MA. The mechanical properties showed that the impact strength of POM/ABS blends decreased in a range of 10-20 wt% and did not change after 20 wt%. The addition of PP-g-MA did not change the impact strength of POM/ABS blends. The Young’s modulus of POM/ABS blends increased up to 30 wt% of ABS and then decreased. While the blends showed the decrease of tensile strength and percent strain at break with increasing ABS content. The addition of PP-g-MA increased the tensile strength of POM/ABS blends in a range of 30-40 wt% of ABS. The above results indicated that the morphology had an effect on the mechanical properties of polymer blends.


2010 ◽  
Vol 150-151 ◽  
pp. 379-385
Author(s):  
Qun Lü ◽  
Qing Feng Zhang ◽  
Hai Ke Feng ◽  
Guo Qiao Lai

The wood-plastic composites (WPC) were prepared via compress molding by using the blends of high density polyethylene (HDPE) and modified polyethylene (MAPE) as the matrix and wood flour (WF) as filler. The effect of MAPE content in the matrix on the mechanical properties of the matrix and WPC was investigated. It was shown that the change of MAPE content in the matrix had no influence on the tensile strength of the matrix, but markedly reduced the impact strength of the matrix. Additionally, it had significant influence on the strength of WPC. When the content of wood flour and the content of the matrix remained fixed, with increasing the content of MAPE in the matrix, the tensile strength and the flexural strength of WPC tended to increase rapidly initially and then become steady. Moreover, with the increasing of MAPE concentration, the impact strength of WPC decreased when the low content of wood flour (30%) was filled, but increased at high wood flour loading (70%).


2020 ◽  
Vol 22 (4) ◽  
pp. 885-894 ◽  
Author(s):  
Benaoum Abdelhak ◽  
Mahmoudi Noureddine ◽  
Mahmoudi Hacen

AbstractIn this work, the influence of carbon fiber surface treatment on mechanical properties of unsaturated polyester was investigated. Two approaches have been used in the surface treatment; the first is the desizing of the carbon fiber by the release of the epoxy layer. The second is with the release of epoxy layer and etching the fibers. It was concluded that both methods give good results on adhesion between the matrix and the fibers. It is found that the treatment of carbon fibers is efficient and greatly improves the CFRP handress. The tensile strength of composite materials increases by 30% for etched carbon fibers compared to untreated carbon fibers.SEM images confirm the results obtained.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 729
Author(s):  
Zhaozhe Yang ◽  
Xinhao Feng ◽  
Min Xu ◽  
Denis Rodrigue

To improve the interfacial adhesion and dispersion of a poplar fiber in a polylactic acid (PLA) matrix, maleic anhydride (MA) and a silane coupling agent (KH550) were used to modify the poplar fiber. The poplar fiber/PLA composites were produced with different modifier contents. The mechanical, thermal, rheological, and physical properties of composites were investigated. A comparison of different natural fiber modifications on the properties of composites was also analyzed. The results showed that both MA and KH550 could improve the interfacial adhesion between the poplar fiber and PLA, resulting in the enhanced mechanical properties of the composite, with 17% and 23% increases of tensile strength for 0.5% MA and 2% KH550, respectively. The thermal properties of the composites were improved at 6% KH550 (a 9% enhancement of T90%) and decreased at 0.5% MA (a 6% decrement of T90%). The wettability of the composites obtained a 11.3% improvement at 4% KH550 and a 5% reduction at 4% MA. Therefore, factors such as mechanical properties, economic efficiency, and durability should be carefully considered when choosing the modifier to improve the property of the composite.


Sign in / Sign up

Export Citation Format

Share Document