scholarly journals Properties of Poplar Fiber/PLA Composites: Comparison on the Effect of Maleic Anhydride and KH550 Modification of Poplar Fiber

Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 729
Author(s):  
Zhaozhe Yang ◽  
Xinhao Feng ◽  
Min Xu ◽  
Denis Rodrigue

To improve the interfacial adhesion and dispersion of a poplar fiber in a polylactic acid (PLA) matrix, maleic anhydride (MA) and a silane coupling agent (KH550) were used to modify the poplar fiber. The poplar fiber/PLA composites were produced with different modifier contents. The mechanical, thermal, rheological, and physical properties of composites were investigated. A comparison of different natural fiber modifications on the properties of composites was also analyzed. The results showed that both MA and KH550 could improve the interfacial adhesion between the poplar fiber and PLA, resulting in the enhanced mechanical properties of the composite, with 17% and 23% increases of tensile strength for 0.5% MA and 2% KH550, respectively. The thermal properties of the composites were improved at 6% KH550 (a 9% enhancement of T90%) and decreased at 0.5% MA (a 6% decrement of T90%). The wettability of the composites obtained a 11.3% improvement at 4% KH550 and a 5% reduction at 4% MA. Therefore, factors such as mechanical properties, economic efficiency, and durability should be carefully considered when choosing the modifier to improve the property of the composite.

2011 ◽  
Vol 675-677 ◽  
pp. 361-364 ◽  
Author(s):  
Yang Zhao ◽  
Jian Hui Qiu ◽  
Hui Xia Feng ◽  
Guo Hong Zhang ◽  
Liang Shao

Rice straw/Poly(butylene succinate)(PBS) composites were prepared by injection molding machine. The influence of content and particle size of rice straw on the mechanical properties of composites indicated that with the increase of rice straw content the tensile strength and fracture strain of the composites was decreased. With the same content of rice straw, the smaller particle size, the more obvious decreased. The influence of dosage of silane coupling agent(SCA) on the composites was studied, the result indicated that with the increase of SCA content, the interface of composite materials significantly improved, the Young’s modulus increased 362% after rice straw was treated by SCA. Thermal analysis showed that the adding of coupling agent didn’t undermine the thermodynamic stability of the composites.


2017 ◽  
Vol 25 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Jiuqiang Song ◽  
Yan Qin ◽  
Jia Chen ◽  
Siwen Qin

In this paper, a continuous glass fiber-reinforced polypropylene prepreg was prepared by fiber treatment with a silane coupling agent and MAH-g-PP resin. Continuous glass fiber-reinforced polypropylene sheets were made from prepreg and PP mats by hot-pressing; they displayed exceptional performance. This paper studies the effects of maleic anhydride grafting on the polypropylene crystallinity and MAH-g-PP content in the prepreg, and the mechanical properties of the composites. The results showed that modifying PP with maleic anhydride decreased the tacticity of the polypropylene molecular chain, which reduced the crystallinity and melting point. An excellent interface formed between the polypropylene and fiber after the glass fiber was treated with a silane coupling agent and MAH-g-PP resin. The mechanical properties of the polymer materials displayed more favorable properties as MAH-g-PP content increased; the ideal MAH-g-PP content was 50%.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5292 ◽  
Author(s):  
Yuki Shirosaki ◽  
Toshinobu Okabayashi ◽  
Saki Yasutomi

Chitosan microfibers are widely used in medical applications because they have favorable inherent properties. However, their mechanical properties require further improvement. In the present study, a trimethoxysilane aldehyde (TMSA) crosslinking agent was added to chitosan microfibers to improve their tensile strength. The chitosan microfibers were prepared using a coagulation method. The tensile strength of the chitosan microfibers was improved by crosslinking them with TMSA, even when only a small amount was used (less than 1%). TMSA did not change the orientation of the chitosan molecules. Furthermore, aldehyde derived from TMSA did not remain, and siloxane units were formed in the microfibers.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2276
Author(s):  
Rozyanty Rahman ◽  
Syed Zhafer Firdaus Syed Putra ◽  
Shayfull Zamree Abd Rahim ◽  
Irwana Nainggolan ◽  
Bartłomiej Jeż ◽  
...  

The demand for natural fiber hybrid composites for various applications has increased, which is leading to more research being conducted on natural fiber hybrid composites due to their promising mechanical properties. However, the incompatibility of natural fiber with polymer matrix limits the performance of the natural fiber hybrid composite. In this research work, the mechanical properties and fiber-to-matrix interfacial adhesion were investigated. The efficiency of methyl methacrylate (MMA)-esterification treatments on composites’ final product performance was determined. The composite was prepared using the hand lay-up method with varying kenaf bast fiber (KBF) contents of 10, 15, 20, 25, 30, 35 (weight%) and hybridized with glass fiber (GF) at 5 and 10 (weight%). Unsaturated polyester (UPE) resin and methyl ethyl ketone peroxide (MEKP) were used as binders and catalysts, respectively. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to examine the effects of MMA-esterification treatment on tensile strength and morphology (tensile fracture and characterization of MMA-esterification treatment) of the composite fabricated. The tensile strength of MMA-treated reinforced UPE and hybrid composites are higher than that of untreated composites. As for MMA treatment, 90 min of treatment showed the highest weight percent gain (WPG) and tensile strength of KBF-reinforced UPE composites. It can be concluded that the esterification of MMA on the KBF can lead to better mechanical properties and adhesion between the KFB and the UPE matrix. This research provides a clear reference for developing hybrid natural fibers, thus contributing to the current field of knowledge related to GF composites, specifically in transportation diligences due to their properties of being lightweight, superior, and involving low production cost.


2021 ◽  
pp. 095400832199079
Author(s):  
Ju-xiang Yang ◽  
Yuan Jia ◽  
Pengna Li ◽  
Ping Sun

To improve the mechanical and tribological properties of bismaleimide (BMI) resin, a novel Si-containing benzoxazine (Si-BOZ) monomer was synthesized using a solvent process and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane as a silane coupling agent. The novel Si-BOZ monomer was subsequently blended with BMI to prepare Si-BOZ/BMI polymer alloys. Furthermore, the effect of Si-BOZ content on the mechanical, tribological, and thermal properties of Si-BOZ/BMI alloys was investigated. The results revealed that the addition of Si-BOZ to BMI improved the mechanical properties and wear resistance of Si-BOZ/BMI; moreover, the glass transition temperature of cured Si-BOZ/BMI alloys was lower than that of pure BMI resin. These results confirmed that the increase in wear resistance of Si-BOZ/BMI alloys can be attributed to the increase in thermal resistance and improvement in mechanical performance owing to the addition of Si-BOZ.


2010 ◽  
Vol 123-125 ◽  
pp. 141-144
Author(s):  
Jirapa Phosee ◽  
Jatuporn Wittayakun ◽  
Nitinat Suppakarn

In this work, rice husk silica (RHS), obtained from rice husk waste, was used as a reinforcing filler for preparing PBAT composites. The RHS surface was modified using a silane coupling agent, i.e. γ-methacryloxypropyltrimethoxysilane (MPS), in order to facilitate interfacial adhesion between PBAT matrix and RHS filler. The contents of MPS were varied between 0.5 - 5.0 % based on weight of RHS. FTIR spectra indicated the appearance of MPS molecules on RHS surface. Untreated RHS and MPS treated RHS were used to produced RHS/PBAT composites containing 30%wt RHS. The results showed that mechanical properties of the PBAT composites can be enhanced by treating RHS surface with 2 %wt MPS.


2013 ◽  
Vol 750-752 ◽  
pp. 858-862
Author(s):  
Cheng You Ma ◽  
Yan Mei Ma ◽  
Zhi He ◽  
Chen Yan ◽  
Dong Jiang

Double block copolymers of polyethersulfone (PES)/polycarbonate (PC) were used as a compatibilizer for a blend of PES/PC. The morphology, thermal properties, mechanical properties, etc. of the resulting ternary blend systems were investigated. The addition of the compatibizer improved the compatibility between PES and PC. It was found that the interfacial adhesion was enhanced; the size of the dispersed phase was reduced. This resulted in an improvement of elongation at break and tenacity of PES/PC blends, while the tensile modulus slightly increased, and tensile strength was almost constant.


2013 ◽  
Vol 392 ◽  
pp. 41-45 ◽  
Author(s):  
Li Bo Ding ◽  
Jiang Rui ◽  
Jun Tao Li

In order to study the impact of nanoZnO on the mechanical properties of PLA, nanoZnO modified with different surface treatment agents (titanium ester NDZ-201,silane coupling agent KH550 ) was added to PLA matrix. The samples were examined by fourier transform infrared (FT-IR) spectroscopy, mechanical properties and SEM. The results show that infrared spectra of nanoZnO modified with different treatment agents include two peaks at 2852cm-1and 2925 cm-1, which are corresponding to C-H stretching vibration, peak at 1735cm-1which is corresponding to NH2, and peak at 964cm-1which is corresponding to P-O-Ti.when the addition of nanoZnO reaches to 1wt.%, the tensile strength of PLA/ZnO nanocomposites have the maximum values of 47.43MPa, increase to 9.64% by pure nanoZnO. The mechanical properties of PLA/ZnO nanocomposites can be improved modified with different treatment agents, and the dispersion of nanoZnO has been significantly improved.


2015 ◽  
Vol 659 ◽  
pp. 463-467
Author(s):  
Sirirat Wacharawichanant ◽  
Parida Amorncharoen ◽  
Ratiwan Wannasirichoke

The effects of polypropylene-graft-maleic anhydride (PP-g-MA) compatibilizers on the morphology and mechanical properties of polyoxymethylene (POM)/acrylonitrile-butadiene-styrene (ABS) blends were investigated. Two types of compatibilizers, PP-g-MA with maleic anhydride 0.50 wt% (PP-g-MA1) and PP-g-MA with maleic anhydride 1.31 wt% (PP-g-MA2) were used to study the interfacial adhesion of POM and ABS. POM/ABS blends with and without PP-g-MA compatibilizer were prepared by an internal mixer and molded by compression molding. Scanning electron microscope (SEM) was used to investigate the morphology of ABS phase in POM matrix. The results found that POM/ABS blends clearly demonstrated a two phase separation of dispersed ABS phase and the POM matrix phase, and ABS phase dispersed as spherical domains in POM matrix in a range of ABS 10-30 wt% and the blends containing ABS more than 30 wt% showed the elongated structure of ABS phase. The addition of PP-g-MA could improve the interfacial adhesion of POM/ABS blends due to the domain size of ABS phase decreased after adding PP-g-MA. The mechanical properties showed that the impact strength of POM/ABS blends decreased in a range of 10-20 wt% and did not change after 20 wt%. The addition of PP-g-MA did not change the impact strength of POM/ABS blends. The Young’s modulus of POM/ABS blends increased up to 30 wt% of ABS and then decreased. While the blends showed the decrease of tensile strength and percent strain at break with increasing ABS content. The addition of PP-g-MA increased the tensile strength of POM/ABS blends in a range of 30-40 wt% of ABS. The above results indicated that the morphology had an effect on the mechanical properties of polymer blends.


2007 ◽  
Vol 361-363 ◽  
pp. 531-534 ◽  
Author(s):  
X.B. Yang ◽  
X. Lu ◽  
J.J. Ge ◽  
Jie Weng

Silanization of hydroxyapatite was employed to improve the bonding between hydroxyapatite and polycaprolactone. FTIR of HA after silanization showed that new peaks attributed to silane do exist. The increase of melting and crystallization temperatures of silaned composites shown from DSC implied that there exists much stronger bonding between PCL and silaned HA particles. Fracture surface of composites after tensile testing observed by using SEM showed that silaned HA particles dispersed much evenly and coalesced compactly in PCL matrix, suggesting that silaned HA particles had good compatibility with PCL. The tensile strength and modulus increased from 16.81 MPa and 239.21 MPa to 20.49 MPa and 539.57 MPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document