Polybutadiene rubber/exfoliated graphite nanocomposites: Impact of filler on the thermal, mechanical and permeability characteristics

2019 ◽  
Vol 35 (3) ◽  
pp. 138-148
Author(s):  
Soney C George ◽  
Jiji Abraham ◽  
Thomasukutty Jose ◽  
Riya Thomas ◽  
Teresa Jacob ◽  
...  

In this report, we demonstrate that both mechanical behaviour and thermal stability of polybutadiene rubber (PBR) nanocomposites could be improved by incorporating exfoliated graphite (EG) using melt mixing method. Incorporation of the filler EG in the polybutadiene (PBD) matrix is confirmed by infrared spectra and X-ray diffraction analysis. The structural characteristics, mechanical properties and thermal properties of these newly modified PBR nanocomposites were systematically analysed and studied. Thermal properties of the nanocomposites were studied using thermogravimetric analysis under nitrogen atmosphere. Thermogravimetric studies showed that PBR8 is having higher thermal stability than that of the PBR gum sample. Mechanical properties like tensile strength, Young’s modulus, tear strength, hardness and compression set of the nanocomposites were studied. Mechanical properties are also high for the modified PBR nanocomposites with maximum filler content. The permeability of organic vapours such as dichloromethane (CH2Cl2), chloroform (CHCl3) and carbon tetrachloride (CCl4) through PBR/EG nanocomposites was also studied. In vapour permeation studies, PBR4 exhibits the least permeability in CH2Cl2, CHCl3 and CCl4 solvents. Polybutadiene rubber–natural graphite (PBR/NG) nanocomposites were also prepared for comparison.

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Deng Xu ◽  
V. Sridhar ◽  
Thanh Tu Pham ◽  
Jin Kuk Kim

AbstractThe potential of exfoliated graphite nano platelets (xGnP™) as reinforcing fillers in flouroelastomer has been investigated. The dispersion of the nano graphite platelets in the polymer matrix has been investigated by WAXD, SEM, TEM, EPMA and AFM. WAXD studies indicated that the processing of composites did not change the inter-gallery distance (d-spacing) of the graphite platelets. The effect of increasing nano graphite loadings on mechanical properties like tensile strength, modulus and tear resistance has been studied. Formation of weld lines on the fracture surface of the composite has been observed by SEM. The thermal stability was determined using thermogravimetric analysis. The composites showed higher thermal stability in comparison with nonreinforced polymer.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1557 ◽  
Author(s):  
Khaliq Majeed ◽  
Ashfaq Ahmed ◽  
Muhammad Saifullah Abu Bakar ◽  
Teuku Meurah Indra Mahlia ◽  
Naheed Saba ◽  
...  

In recent years, there has been considerable interest in the use of natural fibers as potential reinforcing fillers in polymer composites despite their hydrophilicity, which limits their widespread commercial application. The present study explored the fabrication of nanocomposites by melt mixing, using an internal mixer followed by a compression molding technique, and incorporating rice husk (RH) as a renewable natural filler, montmorillonite (MMT) nanoclay as water-resistant reinforcing nanoparticles, and polypropylene-grafted maleic anhydride (PP-g-MAH) as a compatibilizing agent. To correlate the effect of MMT delamination and MMT/RH dispersion in the composites, the mechanical and thermal properties of the composites were studied. XRD analysis revealed delamination of MMT platelets due to an increase in their interlayer spacing, and SEM micrographs indicated improved dispersion of the filler(s) from the use of compatibilizers. The mechanical properties were improved by the incorporation of MMT into the PP/RH system and the reinforcing effect was remarkable as a result of the use of compatibilizing agent. Prolonged water exposure of the prepared samples decreased their tensile and flexural properties. Interestingly, the maximum decrease was observed for PP/RH composites and the minimum was for MMT-reinforced and PP-g-MAH-compatibilized PP/RH composites. DSC results revealed an increase in crystallinity with the addition of filler(s), while the melting and crystallization temperatures remained unaltered. TGA revealed that MMT addition and its delamination in the composite systems improved the thermal stability of the developed nanocomposites. Overall, we conclude that MMT nanoclay is an effective water-resistant reinforcing nanoparticle that enhances the durability, mechanical properties, and thermal stability of composites.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1954
Author(s):  
Yang Liu ◽  
Xun Zhang ◽  
Quanxin Gao ◽  
Hongliang Huang ◽  
Yongli Liu ◽  
...  

In the present study, silver (Ag) nanoparticles and maleic anhydride-grafted polyolefin elastomer (MAH-g-POE) were used as enhancement additives to improve the performance of the polyoxymethylene (POM) homopolymer. Specifically, the POM/Ag/MAH-g-POE ternary nanocomposites with varying Ag nanoparticles and MAH-g-POE contents were prepared by a melt mixing method. The effects of the additives on the microstructure, thermal stability, crystallization behavior, mechanical properties, and dynamic mechanical thermal properties of the ternary nanocomposites were studied. It was found that the MAH-g-POE played a role in the bridging of the Ag nanoparticles and POM matrix and improved the interfacial adhesion between the Ag nanoparticles and POM matrix, owing to the good compatibility between Ag/MAH-g-POE and the POM matrix. Moreover, it was found that the combined addition of Ag nanoparticles and MAH-g-POE significantly enhanced the thermal stability, crystallization properties, and mechanical properties of the POM/Ag/MAH-g-POE ternary nanocomposites. When the Ag/MAH-g-POE content was 1 wt.%, the tensile strength reached the maximum value of 54.78 MPa. In addition, when the Ag/MAH-g-POE content increased to 15wt.%, the elongation at break reached the maximum value of 64.02%. However, when the Ag/MAH-g-POE content further increased to 20 wt.%, the elongation at break decreased again, which could be attributed to the aggregation of excessive Ag nanoparticles forming local defects in the POM/Ag/MAH-g-POE ternary nanocomposites. Furthermore, when the Ag/MAH-g-POE content was 20 wt.%, the maximum decomposition temperature of POM/Ag/MAH-g-POE ternary nanocomposites was 398.22 °C, which was 71.39 °C higher than that of pure POM. However, compared with POM, the storage modulus of POM/Ag/MAH-g-POE ternary nanocomposites decreased with the Ag/MAH-g-POE content, because the MAH-g-POE elastomer could reduce the rigidity of POM.


2021 ◽  
pp. 089270572199788
Author(s):  
Md Amir Sohel ◽  
Abhijit Mondal ◽  
P Mohammad Arif ◽  
Sabu Thomas ◽  
Asmita SenGupta

Polycarbonate (PC) /graphene nanocomposite was prepared using multilayer graphene (MLG) with loadings of 0.5, 1, and 3 wt% via melt mixing process. Morphological, structural, and thermal properties of the PC/MLG nanocomposites are investigated to look into the influence of MLG on the nanocomposite. A significant increase (∼6.4°C) in glass transition temperature is observed upon the addition of 3 wt% of MLG into the polycarbonate matrix. This increase in glass transition temperature may be due to the interaction between the MLG and polycarbonate polymer matrix. The specific heat capacity of pure PC and PC/MLG nanocomposites varies linearly with temperature below their glass transition. Upon the addition of MLGs, the overall thermal stability of PC/MLG nanocomposites increases with MLG loadings. A maximum increase about 29.23°C in T onset of thermal decomposition is observed in PC/MLG nanocomposite having 3 wt% of MLG loading. The activation energy ( Ea) of thermal decomposition is also calculated by kinetic analysis of thermal decomposition of the PC/MLG nanocomposites using Horowitz–Metzger and Broido’s methods.


2014 ◽  
Vol 1053 ◽  
pp. 257-262
Author(s):  
Mei Li ◽  
Xiang Yu Zhao ◽  
Wei Shao ◽  
Chuan Bao Ma ◽  
Rui Xue Zheng ◽  
...  

An epoxy adhesive and its curing agent are tested using differential scaning calorimetry under different atmospheres and after different exposure times to natural air to analyze its thermal properties. The results show that after the pure epoxy, the curing agent and the adhesive mixture of them are exposed in natural air for different period of time, all show different levels of decline in thermal stability and more complicated reactions when tested in the DSC and TGA in O2 and air, while the thermal properties remain stable when they are tested in an inert gas like N2. And according to the mechanical property tests and SEM results, the mechanical properties of the adhesive mixture in N2 are better than that in air. The results indicate that inert gas can protect the property of this kind of adhesive and thus increase its bond strength.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2308
Author(s):  
Iman Taraghi ◽  
Sandra Paszkiewicz ◽  
Izabela Irska ◽  
Krzysztof Pypeć ◽  
Elżbieta Piesowicz

In this paper, the mechanical properties, thermal stability, and transparency of ethylene–propylene copolymer (EPC) elastomer modified with various weight percentages (1, 3, and 5 wt.%) of SiO2 nanofillers have been studied. The nanocomposites were prepared via a simple melt mixing method. The morphological results revealed that the nanofillers were uniformly dispersed in the elastomer, where a low concentration of SiO2 (1 wt.%) had been added into the elastomer. The FTIR showed that there are interfacial interactions between EPC matrix and silanol groups of SiO2 nanoparticles. Moreover, by the addition of 1 wt.% of SiO2 in the EPC, the tensile strength and elongation at break of EPC increased by about 38% and 27%, respectively. Finally, all samples were optically transparent, and the transparency of the nanocomposites reduced by increasing the content of SiO2 nanoparticles.


2018 ◽  
Vol 280 ◽  
pp. 264-269
Author(s):  
Heng Chun Wei ◽  
Teh Pei Leng ◽  
Yeoh Chow Keat

This work reports on mechanical and thermal properties of a novel polymer blend. Blends were prepared by mixing silicone rubber with diphenyl – 4,4 – dissocyanate in different ratios. Graphene nanoplatelets was added as conductive filler to improve the electrical conductivity of the blends. The mechanical properties, including tensile and tear performances were measured by a material testing system. The thermal stability of the blends was measured by thermogravimetric analysis. Incorporation 20 vol.% of silicone rubber can help to improve the thermal stability of the blend, meanwhile optimum mechanical properties of the blends is achieved.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 102 ◽  
Author(s):  
Jingjing Liao ◽  
Nicolas Brosse ◽  
Antonio Pizzi ◽  
Sandrine Hoppe

Tannins were used as reinforcing components for polypropylene with anti-UV properties via dynamic curing extrusion. The influence of cross-linked tannins in different weight fraction and their anti-UV capacity on morphological, mechanical, rheological, crystallize and thermal properties were studied. The experimental results indicated that the cross-linked tannins improve Young’s modulus, crystallinity, and thermal stability and reinforce the internal network of polypropylene. After UV accelerated weathering, polypropylene had fewer surface cracks, lower carbonyl index, fewer crystallinity decreases and less mechanical properties loss with increasing tannin content.


2009 ◽  
Vol 79-82 ◽  
pp. 2027-2030 ◽  
Author(s):  
Poonsub Threepopnatkul ◽  
Chanin Kulsetthanchalee ◽  
K. Bunmee ◽  
N. Kliaklom ◽  
W. Roddouyboon

This research was to study the related mechanical and thermal properties of recycled polypropylene from post consumer containers reinforced with coir fiber. Surface of coir fiber was treated with sodium hydroxide to remove lignin and hemicelluloses and likely to improve the interfacial adhesion in the composites. The composites of treated coir fiber and recycled polypropylene were prepared by varying the coir fiber contents at 5%, 10% and 20% by weight using a twin screw extruder. The thermal properties were investigated by thermal gravimetric analysis (TGA) and differential scanning calorimeter (DSC). The results from TGA showed that thermal stability of the composites was lower than that of recycled polypropylene resin and thermal stability decreased with increasing coir fiber content. From DSC results, it indicated that the crystallinity of treated coir fiber composites increased as a function of fiber content. The mechanical properties of injection-molded samples were studied by universal testing machine. The treated coir fiber composites produced enhanced mechanical properties. The tensile strength, tensile modulus and impact strength of modified coir fiber/recycled polypropylene composites increased as a function of coir fiber content.


Sign in / Sign up

Export Citation Format

Share Document