Application of needle-free roller spinning technology in nanofibers

2019 ◽  
Vol 50 (6) ◽  
pp. 906-920
Author(s):  
Hao Shi ◽  
Pingfan Ning ◽  
Pingjuan Niu ◽  
Tianbo Lu ◽  
Shan Wang

Although electrospinning is considered a powerful and generic tool for the preparation of nanofiber webs, several issues still need to be overcome for real-world applications. Most of these problems are caused by needle-based systems, where the key factor influencing successful electrospinning is limited by the low yield of nanofibers prepared by needle-type electrospinning and the balance between the electric field force and the surface tension of the droplets. In order to solve these two issues, we use the roller type electrospinning system to prepare nanofibers. The characteristic of the system is that the roller is made of glass, and the voltage is connected to the liquid bath and the auxiliary electrode is added. We demonstrate that needle-disk electrospinning produces nanofiber with super-high throughput of 15.9 g/h, which is 177 times higher than traditional electrospinning under similar spinning conditions. Not only does it increase productivity, but also it facilitates handling and cleaning work. In addition, the auxiliary electrode can optimize the electric field and reduce the edge effect of the collecting plate. This method should help expand the range of applications for electrospun nanofiber webs in the near future.

2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


2009 ◽  
Vol 60 (6) ◽  
pp. 359-361 ◽  
Author(s):  
L CARNELL ◽  
E SIOCHI ◽  
R WINCHESKI ◽  
N HOLLOWAY ◽  
R CLARK

Author(s):  
Byungwook Ahn ◽  
Rajagopal Panchapakesan ◽  
Kangsun Lee ◽  
Kwang W. Oh

The droplet-based microfluidic technology has a potent high throughput platform for biomedical research and applications [1]. Recently, Link et al. showed that an electric field can be very useful to control water droplet in carrier oil [2]. In this research, simultaneous droplet formation and sorting has been demonstrated using an electric field, allowing very precise droplet sorting to different outlets depending on the electrical actuation.


2019 ◽  
Vol 13 (1) ◽  
pp. 123-138
Author(s):  
Željko Burcar

We live in a society of knowledge? Labor market needs every day set new demands for competences. The project approach to designing education appears to be inevitable. Competences are a key factor and one of the prerequisites for an individual's success in the labor market, which will be even more flexible in the near future. The labor market for 8 years will require many new competencies. The education system must prepare current students for future competencies based on ZVSSOUP model. In this paper, theoretical elements of designing and redesigning educational content have been set up according to project principles. Efficient project model algorithm assumes design from the final goal to the beginning. The proposed algorithm can meet the needs for quick redefinition of the required competencies for the future labor market and will also be tested by future empirical research.


Author(s):  
Can Chi Trieu ◽  
Minh-Thien Nguyen ◽  
Thien-Toan Quan Le ◽  
Manh-Quyen Dam ◽  
Anh-Tu Tran ◽  
...  

3D printer and 3D printing technology are now considered as one of the key factor in the manufacturing industry. In the near future, we could envisage different application of 3D printing method in the sector of materials processing and production. In the sector of civil engineering, they existed somewhere some construction works developed with 3D printing technology.  In this study, we aim to manufacture laboratory-scale printers with nozzles and extrusion feeding systems suitable for paste such as the case of clay-based materials of silicate industry. The movement system was encoded and controlled via the motherboard (Mach 3 controller software). Stepper motors and shaft drives were also implemented in the frame element of such printer. The feeding system was designed based on the extrusion method including cylinder and piston element. Based on that, sample size 200x300x300mm was available for operation testing. Concerning the performance of the instrument, we have obtained printed specimens with different geometric shapes with complexity. From the obtained result, we also discussion on the feasibility up scaling the study and developing a 3D printer for silicate based materials.


Author(s):  
Michael Zabarankin

The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor’s discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q =(2 R 2 +3 R +2)/(7 R 2 ), where R and Q are ratios of the phases’ electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, Ca E , that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (Ca E =0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some Ca E >0. This work finds Q and Ca E such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4 π /3 is qualitatively stationary—the normal velocity of the drop’s interface is minute and the interface coincides visually with a streamline. The found Q and Ca E depend on R and ρ , and for large ρ , e.g. ρ ≥3, they have simple approximations: Q ∼( R 2 + R +1)/(3 R 2 ) and Ca E ∼ 3 3 π ρ / 2   ( 6  ln  ⁡ ρ + 2  ln ⁡ [ 96 π ] − 9 ) / ( 12  ln  ⁡ ρ + 4  ln ⁡ [ 96 π ] − 17 )   ( R + 1 ) 2 / ( R − 1 ) 2 .


2021 ◽  
Vol 11 (1) ◽  
pp. 32-35
Author(s):  
Vasyl Tchaban ◽  

he differential equations of motion of electrically charged bodies in an uneven vortex electric field at all possible range of velocities are obtained in the article. In the force interaction, in addition to the two components – the Coulomb and Lorentz forces – the third component of a hitherto unknown force is involved. This component turned out to play a crucial role in the dynamics of movement. The equations are written in the usual 3D Euclidean space and physical time.This takes into account the finite speed of electric field propagation and the law of electric charge conservation. On this basis, the trajectory of the electron in an uneven electric field generated by a positively charged spherical body is simulated. The equations of motion are written in vector and coordinate forms. A physical interpretation of the obtained mathematical results is given. Examples of simulations are given.


2019 ◽  
Vol 21 (13) ◽  
pp. 6810-6827 ◽  
Author(s):  
Dilek Yalcin ◽  
Calum J. Drummond ◽  
Tamar L. Greaves

High throughput methods were used to investigate ionic liquid containing solutions to provide systematic data of a broad compositional space. We have principally focused on the surface tension, apparent pH and liquid nanostructure to identify potential self-assembly and protein stabilizing ability of solvent systems.


Sign in / Sign up

Export Citation Format

Share Document