Alkali-treated coir fibre-pith composite for waste water treatment

2021 ◽  
pp. 152808372110142
Author(s):  
Monnisha Ganesan ◽  
Gobi Nallathambi

Coir fibre and pith are eco-friendly material used in the preparation of composites. Coir fibre and coir pith were treated with sodium hydroxide to study the effect of alkali for prolonged exposure on its properties. Fibre and pith were treated with different concentrations of NaOH from 5% to 30% for 24 hours at room temperature. Alkali treatment removes the impurities and the expose the crystalline cellulose and to enhance the surface properties. The alkali-treated coir fibre and pith were characterized by Scanning electron microscopy for morphology, X-ray diffraction for crystallinity index, thermogravimetry for thermal stability, Fourier-transform infrared spectroscopy for structural changes. The chemical composition was analysed for both fibre and pith. Physical properties such as bulk density, particle density and porosity were determined for pith. After alkali treatment, the properties (physical and chemical) of the treated fibre (5% to 20%) has been enhanced. For coir pith the properties has been diminished. Untreated/treated coir fibre/pith filter (CFP) were developed to study the removal of heavy metal ions from the waste water, where untreated (CFP) as a control. The removal efficiency of the developed CFP filter for heavy metal ions were determined by Inductively coupled plasma - optical emission spectrometry (ICP-OES). 5% CFP filter exhibited higher efficiency for removal of heavy metal ions.

2014 ◽  
Vol 587-589 ◽  
pp. 692-695
Author(s):  
Wei Sun

Bio-absorption has an unparalleled advantage over other traditional methods in removing and recycling heavy metal ions from waste water. Consequently, it has a promising future. In this paper, the traditional methods and the bio-sorption method via which heavy metals are removed from waste water are compared to summarize the mechanism of bio-sorption, the types of bio-sorbent, the factors that can influence bio-sorption and the state of its application in waste water treatment .


2019 ◽  
Vol 80 (8) ◽  
pp. 1407-1412 ◽  
Author(s):  
Rue Chiramba ◽  
Gratitude Charis ◽  
Nonhlanhla Fungura ◽  
Gwiranai Danha ◽  
Tirivaviri Mamvura

Abstract Contamination of water bodies by heavy metal ions is a challenge many developing nations like Zimbabwe face, with negative environmental and socio-economic repercussions. Treating affected bodies usually requires a costly consignment of chemicals and activated carbon. This research investigates the possible use of an abundant waste resource – poultry feathers – to make activated carbon for heavy metal ion removal. Poultry consumption in this nation generates more than five million tonnes of feathers a year, with very few uses of this by-product. This research was carried out to evaluate the effectiveness of activated carbon synthesized from poultry feathers with sodium hydroxide as the activating agent. It was tested for removing heavy metal ions from waste water at Lake Chivero and the experimental work done showed that it had a removal efficiency as high as 97%, with a high affinity for lead ions as compared with chromium ions. Upon characterization, the activated carbon showed an iodine number of 520 mg and it worked best at a pH value of 8. The efficiency removal also increased with increasing adsorbent concentration as well as contact time up to a period where these factors ceased to be the limiting factors of the reaction.


Author(s):  
Gharde A. D. ◽  
Gharde B. D.

Salt of various heavy metals and other potentially dangerous are being discharged into the aquatic environment. Water containing vital concentration of some of heavy metal ions are harmful to human being, animal as well as aquatic organisms. The toxicity of some heavy metal ions, even at the trace level has been recognised with respect to the public health for many years. Metals such as Mercury, Lead, Cadmium, Copper and Chromium are under this category. Many metals have been evaluated as harmful to aquatic life above certain toxicity level. Any type of pollution brings about noticeable changes in the physiochemical parameters of the water, therby making it unsuitable for some beneficial uses. Thus, pollution causes changes in almost in the parameter. When increasing the pace of industrialisation along with population explosion, urbanisation and green revolution are reflected in varying degree of purity of water, soil and air. Majority of industries are water based and considerable volume of waste water is discharged to the environment either untreated or inadequately treated leading to the problem of surface and ground water pollution. The capital cost and operating waste water treatment system are rising on one hand and on the other there is a pressing demand for the treatment of waste water generated by increase residential and industrial development.


Author(s):  

Regularity of heavy metal ions isolation from waste waters with modified montmorillonit hydrosoles has been studied. The agents’ sorption characteristics have been investigated. The possibility of heavy non-ferrous metal ions isolation up to the current norms of permissible discharge to water bodies has been demonstrated.


2020 ◽  
Vol 13 ◽  
Author(s):  
Rishabha Malviya ◽  
Pramod Sharma ◽  
Akanksha Sharma

: Manuscript discussed about the role of polysaccharides and their derivatives in the removal of metal ions from industrial waste water. Quick modernization and industrialization increases the amount of various heavy metal ions in the environment. They can possess various disease in humans and also causes drastic environmental hazards. In this review the recent advancement for the adsorption of heavy metal ions from waste water by using different methods has been studied. Various natural polymers and their derivatives are act as effective adsorbents for the removal of heavy metal ions from the waste water released from the industries and the treated water released into the environment can decreases the chances of diseases in humans and environmental hazards. From the literature surveys it was concluded that the removal of heavy metal ions from the industrial waste water was important to decrease the environmental pollution and also diseases caused by the heavy metal ions. Graft copolymers were acts as most efficient adsorbent for the removal of heavy metal ions and most of these followed the pseudo first order and pseudo second order model of kinetics.


Author(s):  
Yasuaki UEDA ◽  
Fumio NOGUCHI ◽  
Keisuke KAWANO ◽  
Koki OTA

2021 ◽  
Vol 10 (3) ◽  
pp. xx-xx
Author(s):  
Thu Le Dieu ◽  
Hoang Tran Vinh

In this study, heavy metal ions or organic in the aqueous solution are removed by adsorbent without filtration or centrifugation as well as incorporate magnetic materials into the adsorbent. A composite film GO/PVA from PVA and self – synthesized GO by co - precipitation method has synthesized successfully. This composite was characterized by XRD, SEM, FT-IR to evaluate the properties of this material. The results showed that there was an interaction between GO and PVA so we have tested the adsorption capacity of this composite with Co(II) ions and the obtained efficiency of this process was 99.5% with the initial concentration of solution is 20 mg.L-1. This film is completely capable of removing heavy metal ions from waste water.


Sign in / Sign up

Export Citation Format

Share Document