scholarly journals IL-17A is involved in diabetic inflammatory pathogenesis by its receptor IL-17RA

2020 ◽  
pp. 153537022095694
Author(s):  
Ao-Wang Qiu ◽  
Xin Cao ◽  
Wei-Wei Zhang ◽  
Qing-Huai Liu

Interleukin (IL)-17A, a proinflammatory cytokine produced by T-helper (Th)17 cells, has been associated with autoimmune diseases. Type 1 diabetes (T1D) is caused either due to mutation of insulin gene or developed as an autoimmune disease. Studies have shown that IL-17A expression is upregulated in the pancreas in T1D patients and animal models. However, role or importance of IL-17A in T1D pathogenesis needs elucidation. Particularly, evidence for a direct injury of IL-17A to pancreatic β cells through activating IL-17 receptor A (IL-17RA) is lacking. Ins2Akita (Akita) mouse, a T1D model with spontaneous mutation in insulin 2 gene leading to β-cell apoptosis, was crossed with IL-17A-knockout mouse and male IL-17A-deficient Akita mice were used. Streptozotocin, a pancreatic β-cell-specific cytotoxin, was employed to induce a diabetic model in MIN6 cells, a mouse insulinoma cell line. IL-17A expression in the pancreas was upregulated in both Akita and streptozotocin-induced diabetic mice. IL-17A-knockout Akita mice manifested reduced blood glucose concentration and raised serum insulin level. IL-17A deficiency also decreased production of the proinflammatory cytokines tumor necrosis factor (TNF)-α, IL-1β, and interferon (IFN)-γ in Akita mice. IL-17RA expression in MIN6 cells was upregulated by IL-17A. IL-17A enhanced expression of TNF-α, IL-1β, IFN-γ, and inducible nitric oxide synthase (iNOS) and further increased streptozotocin-induced expression of the inflammatory factors in MIN6 cells. IL-17A exacerbated streptozotocin-induced MIN6 cell apoptosis and insulin secretion impairment. Blocking IL-17RA with anti-IL-17RA-neutralizing antibody reduced all these deleterious effects of IL-17A on MIN6 cells. Collectively, IL-17A deficiency alleviated hyperglycemia, hypoinsulinemia, and inflammatory response in Akita mice that are characteristic for T1D. IL-17A exerted an alone and synergistic destruction with streptozotocin to pancreatic β cells through IL-17RA pathway. Thus, the data suggest that targeting IL-17A and/or IL-17RA is likely to preserve remaining β-cell function and treat T1D. Impact statement The participation of interleukin (IL)-17A in diabetic pathogenesis is suggested in animal models of autoimmune diabetes and in patients with type 1 diabetes (T1D), but with some contradictory results. Particularly, evidence for a direct injury of IL-17A to pancreatic β cells is lacking. We showed that IL-17A deficiency alleviated diabetic signs including hyperglycemia, hypoinsulinemia, and inflammatory response in Ins2Akita (Akita) mice, a T1D model with spontaneous mutation in insulin 2 gene leading to β-cell apoptosis. IL-17A enhanced inflammatory reaction, oxidative stress, and cell apoptosis but attenuated insulin level in mouse insulin-producing MIN6 cells. IL-17A had also a synergistic destruction to MIN6 cells with streptozotocin (STZ), a pancreatic β-cell-specific cytotoxin. Blocking IL-17 receptor A (IL-17RA) reduced all these deleterious effects of IL-17A on MIN6 cells. The results demonstrate the role and the importance of IL-17A in T1D pathogenesis and suggest a potential therapeutic strategy for T1D targeting IL-17A and/or IL-17RA.

2009 ◽  
Vol 83 (16) ◽  
pp. 8004-8011 ◽  
Author(s):  
Young-Sun Lee ◽  
Na Li ◽  
Seungjin Shin ◽  
Hee-Sook Jun

ABSTRACT The D variant of encephalomyocarditis virus (EMC-D virus) causes diabetes in mice by destroying pancreatic β cells. In mice infected with a low dose of EMC-D virus, macrophages play an important role in β-cell destruction by producing soluble mediators such as interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO). To investigate the role of NO and inducible NO synthase (iNOS) in the development of diabetes in EMC-D virus-infected mice, we infected iNOS-deficient DBA/2 mice with EMC-D virus (2 × 102 PFU/mouse). Mean blood glucose levels in EMC-D virus-infected iNOS-deficient mice and wild-type mice were 205.5 and 466.7 mg/dl, respectively. Insulitis and macrophage infiltration were reduced in islets of iNOS-deficient mice compared with wild-type mice at 3 days after EMC-D virus infection. Apoptosis of β cells was decreased in iNOS-deficient mice, as evidenced by reduced numbers of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells. There were no differences in mRNA expression of antiapoptotic molecules Bcl-2, Bcl-xL, Bcl-w, Mcl-1, cIAP-1, and cIAP-2 between wild-type and iNOS-deficient mice, whereas expression of proapoptotic Bax and Bak mRNAs was significantly decreased in iNOS-deficient mice. Expression of IL-1β and TNF-α mRNAs was significantly decreased in both islets and macrophages of iNOS-deficient mice compared with wild-type mice after EMC-D virus infection. Nuclear factor κB was less activated in macrophages of iNOS-deficient mice after virus infection. We conclude that NO plays an important role in the activation of macrophages and apoptosis of pancreatic β cells in EMC-D virus-infected mice and that deficient iNOS gene expression inhibits macrophage activation and β-cell apoptosis, contributing to prevention of EMC-D virus-induced diabetes.


2020 ◽  
Vol 472 (10) ◽  
pp. 1469-1480
Author(s):  
Bashair M. Mussa ◽  
Ankita Srivastava ◽  
Abdul Khader Mohammed ◽  
Anthony J. M. Verberne

Abstract Dysfunction of the pancreatic β cells leads to several chronic disorders including diabetes mellitus. Several mediators and mechanisms are known to be involved in the regulation of β cell secretory function. In this study, we propose that cytokine-induced nitric oxide (NO) production interacts with cholinergic mechanisms to modulate insulin secretion from pancreatic β cells. Using a rat insulinoma cell line INS-1, we demonstrated that β cell viability decreases significantly in the presence of SNAP (NO donor) in a concentration- and time-dependent manner. Cell viability was also found to be decreased in the presence of a combined treatment of SNAP with SMN (muscarinic receptor antagonist). We then investigated the impact of these findings on insulin secretion and found a significant reduction in glucose uptake by INS-1 cells in the presence of SNAP and SMN as compared with control. Nitric oxide synthase 3 gene expression was found to be significantly reduced in response to combined treatment with SNAP and SMN suggesting an interaction between the cholinergic and nitrergic systems. The analysis of gene and protein expression further pin-pointed the involvement of M3 muscarinic receptors in the cholinergic pathway. Upon treatment with cytokines, reduced cell viability was observed in the presence of TNF-α and IFN-γ. A significant reduction in insulin secretion was also noted after treatment with TNF-α and IFN-γ and IL1-β. The findings of the present study have shown for the first time that the inhibition of the excitatory effects of cholinergic pathways on glucose-induced insulin secretion may cause β cell injury and dysfunction of insulin secretion in response to cytokine-induced NO production.


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Kazuki Orime ◽  
Jun Shirakawa ◽  
Yu Togashi ◽  
Kazuki Tajima ◽  
Hideaki Inoue ◽  
...  

Decreased β-cell mass is a hallmark of type 2 diabetes, and therapeutic approaches to increase the pancreatic β-cell mass have been expected. In recent years, gastrointestinal incretin peptides have been shown to exert a cell-proliferative effect in pancreatic β-cells. Trefoil factor 2 (TFF2), which is predominantly expressed in the surface epithelium of the stomach, plays a role in antiapoptosis, migration, and proliferation. The TFF family is expressed in pancreatic β-cells, whereas the role of TFF2 in pancreatic β-cells has been obscure. In this study, we investigated the mechanism by which TFF2 enhances pancreatic β-cell proliferation. The effects of TFF2 on cell proliferation were evaluated in INS-1 cells, MIN6 cells, and mouse islets using an adenovirus vector containing TFF2 or a recombinant TFF2 peptide. The forced expression of TFF2 led to an increase in bromodeoxyuridine (BrdU) incorporation in both INS-1 cells and islets, without any alteration in insulin secretion. TFF2 significantly increased the mRNA expression of cyclin A2, D1, D2, D3, and E1 in islets. TFF2 peptide increased ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. A MAPK kinase inhibitor (U0126) abrogated the TFF2 peptide-mediated proliferation of MIN6 cells. A CX-chemokine receptor-4 antagonist also prevented the TFF2 peptide-mediated increase in ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. These results indicated that TFF2 is involved in β-cell proliferation at least partially via CX-chemokine receptor-4-mediated ERK1/2 phosphorylation, suggesting TFF2 may be a novel target for inducing β-cell proliferation.


2015 ◽  
Vol 290 (34) ◽  
pp. 20687-20699 ◽  
Author(s):  
Cong Yu ◽  
Shang Cui ◽  
Chen Zong ◽  
Weina Gao ◽  
Tongfu Xu ◽  
...  

The role of NR4A1 in apoptosis is controversial. Pancreatic β-cells often face endoplasmic reticulum (ER) stress under adverse conditions such as high free fatty acid (FFA) concentrations and sustained hyperglycemia. Severe ER stress results in β-cell apoptosis. The aim of this study was to analyze the role of NR4A1 in ER stress-mediated β-cell apoptosis and to characterize the related mechanisms. We confirmed that upon treatment with the ER stress inducers thapsigargin (TG) or palmitic acid (PA), the mRNA and protein levels of NR4A1 rapidly increased in both MIN6 cells and mouse islets. NR4A1 overexpression in MIN6 cells conferred resistance to cell loss induced by TG or PA, as assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and TUNEL assays indicated that NR4A1 overexpression also protected against ER stress-induced apoptosis. This conclusion was further confirmed by experiments exploiting siRNA to knockdown NR4A1 expression in MIN6 cells or exploiting NR4A1 knock-out mice. NR4A1 overexpression in MIN6 cells reduced C/EBP homologous protein (CHOP) expression and Caspase3 activation induced by TG or PA. NR4A1 overexpression in MIN6 cells or mouse islets resulted in Survivin up-regulation. A critical regulatory element was identified in Survivin promoter (−1872 bp to −1866 bp) with a putative NR4A1 binding site; ChIP assays demonstrated that NR4A1 physically associates with the Survivin promoter. In conclusion, NR4A1 protects pancreatic β-cells against ER stress-mediated apoptosis by up-regulating Survivin expression and down-regulating CHOP expression, which we termed as “positive and negative regulation.”


2021 ◽  
Author(s):  
Jinghe Li ◽  
Ryota Inoue ◽  
Yu Togashi ◽  
Tomoko Okuyama ◽  
Aoi Satoh ◽  
...  

The effects of imeglimin, a novel anti-diabetes agent, on β-cell function remain unclear. Here, we unveiled the impact of imeglimin on β-cell survival. Treatment with imeglimin augmented mitochondrial function, enhanced insulin secretion, promoted β-cell proliferation, and improved β-cell survival in mouse islets. Imeglimin upregulated the expression of endoplasmic reticulum (ER)-related molecules including <i>Chop (Ddit3),</i> <i>Gadd34</i> (<i>Ppp1r15a</i>), <i>Atf3</i>, and <i>Sdf2l1</i>, and decreased eIF2α phosphorylation, after treatment with thapsigargin, and restored global protein synthesis in β-cells under ER stress. Imeglimin failed to protect ER stress-induced β-cell apoptosis in CHOP-deficient islets or in the presence of GADD34 inhibitor. Treatment with imeglimin showed a significant decrease in the number of apoptotic β-cells and increased β-cell mass in Akita mice. Imeglimin also protected against β-cell apoptosis in both human islets and human pluripotent stem cell (<a>hPSC)-derived β-like cells</a>. <a>Taken together, imeglimin modulates ER homeostasis pathway, which results in the prevention of β-cell apoptosis both <i>in vitro</i> and <i>in vivo</i>.</a>


Author(s):  
Li Wu ◽  
Yuncheng Lv ◽  
Ying Lv ◽  
Sunmin Xiang ◽  
Zhibo Zhao ◽  
...  

Abstract Excessive accumulation of cholesterol in β cells initiates endoplasmic reticulum (ER) stress and associated apoptosis. We have reported that excessive uptake of cholesterol by MIN6 cells decreases the expression of secretagogin (SCGN) and then attenuates insulin secretion. Here, we aimed to determine whether cholesterol-induced SCGN decrease is involved in the modulation of ER stress and apoptosis in pancreatic β cells. In this study, MIN6 cells were treated with oxidized low-density lipoprotein (ox-LDL) for 24 h, and then intracellular lipid droplets and cell apoptosis were quantified, and SCGN and ER stress markers were identified by western blot analysis. Furthermore, small interfer RNA (siRNA)-mediated SCGN knockdown and recombinant plasmid-mediated SCGN restoration experiments were performed to confirm the role of SCGN in ER stress and associated cell apoptosis. Finally, the interaction of SCGN with ATF4 was computationally predicted and then validated by a co-immunoprecipitation assay. We found that ox-LDL treatment increased the levels of ER stress markers, such as phosphorylated protein kinase-like endoplasmic reticulum kinase, phosphorylated eukaryotic initiation factor 2 alpha, activating transcription factor 4 (ATF4), and transcription factor CCAAT-enhancer-binding protein homologous protein, and promoted MIN6 cell apoptosis; in addition, the expression of SCGN was downregulated. siRNA-mediated SCGN knockdown exacerbated β-cell ER stress by increasing ATF4 expression. Pretreatment of MIN6 cells with the recombinant SCGN partly antagonized ox-LDL-induced ER stress and apoptosis. Furthermore, a co-immunoprecipitation assay revealed an interaction between SCGN and ATF4 in MIN6 cells. Taken together, these results demonstrated that pancreatic β-cell apoptosis induced by ox-LDL treatment can be attributed, in part, to an SCGN/ATF4-dependent ER stress response.


2011 ◽  
Vol 210 (3) ◽  
pp. 285-292 ◽  
Author(s):  
Diana Choi ◽  
Stephanie A Schroer ◽  
Shun Yan Lu ◽  
Erica P Cai ◽  
Zhenyue Hao ◽  
...  

Cytochrome c is one of the central mediators of the mitochondrial or the intrinsic apoptotic pathway. Mice harboring a ‘knock-in’ mutation of cytochrome c, impairing only its apoptotic function, have permitted studies on the essential role of cytochrome c-mediated apoptosis in various tissue homeostasis. To this end, we examined the role of cytochrome c in pancreatic β-cells under homeostatic conditions and in diabetes models, including those induced by streptozotocin (STZ) and c-Myc. Previous studies have shown that both STZ- and c-Myc-induced β-cell apoptosis is mediated through caspase-3 activation; however, the precise mechanism in these modes of cell death was not characterized. The results of our study show that lack of functional cytochrome c does not affect glucose homeostasis or pancreatic β-cell mass under basal conditions. Moreover, the cytochrome c-mediated intrinsic apoptotic pathway is required for neither STZ- nor c-Myc-induced β-cell death. We also observed that the extrinsic apoptotic pathway mediated through caspase-8 was not essential in c-Myc-induced β-cell destruction. These findings suggest that cytochrome c is not required for STZ-induced β-cell apoptosis and, together with the caspase-8-mediated extrinsic pathway, plays a redundant role in c-Myc-induced β-cell apoptosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xue Zhang ◽  
Lihua Zhao ◽  
Runbing Jin ◽  
Min Li ◽  
Mei-Shuang Li ◽  
...  

Many ion channels participate in controlling insulin synthesis and secretion of pancreatic β-cells. Epithelial sodium channel (ENaC) expressed in human pancreatic tissue, but the biological role of ENaC in pancreatic β-cells is still unclear. Here, we applied the CRISPR/Cas9 gene editing technique to knockout α-ENaC gene in a murine pancreatic β-cell line (MIN6 cell). Four single-guide RNA (sgRNA) sites were designed for the exons of α-ENaC. The sgRNA1 and sgRNA3 with the higher activity were constructed and co-transfected into MIN6 cells. Through processing a series of experiment flow included drug screening, cloning, and sequencing, the α-ENaC gene-knockout (α-ENaC−/−) in MIN6 cells were obtained. Compared with the wild-type MIN6 cells, the cell viability and insulin content were significantly increased in α-ENaC−/− MIN6 cells. Therefore, α-ENaC−/− MIN6 cells generated by CRISPR/Cas9 technology added an effective tool to study the biological function of α-ENaC in pancreatic β-cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yanmei Lou ◽  
Muyan Kong ◽  
Leyan Li ◽  
Yu Hu ◽  
Wenjun Zhai ◽  
...  

Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by insulin deficiency due to pancreatic β-cell damage and leads to hyperglycemia. The precise molecular mechanisms of the etiology of T1DM are not completely understood. Oxidative stress and the antioxidant status of pancreatic β-cells play a vital role in the pathogenesis and progression of T1DM. The Keap1/Nrf2 signaling pathway plays a critical role in cellular resistance to oxidative stress. This study is aimed at investigating the role of the Keap1/Nrf2 signaling pathway in the progression of T1DM. An alloxan- (ALX-) stimulated T1DM animal model in wild-type (WT) and Nrf2 knockout (Nrf2-/-) C57BL/6J mice and a mouse pancreatic β-cell line (MIN6) were established. Compared with the tolerant (ALX exposure, nondiabetic) WT mice, the sensitive (ALX exposure, diabetic) WT mice exhibited higher blood glucose levels and lower plasma insulin levels. The Keap1/Nrf2 signaling pathway was significantly inhibited in the sensitive WT mice, which was reflected by overexpression of Keap1 and low expression of Nrf2, accompanied by a marked decrease in the expression of the antioxidative enzymes. Compared with WT mice, the Nrf2-/- mice had an increased incidence of T1DM and exhibited more severe pancreatic β-cell damage. The results of in vitro experiments showed that ALX significantly inhibited the viability and proliferation and promoted the apoptosis of MIN6 cells. ALX also markedly increased intracellular ROS production and caused DNA damage in MIN6 cells. In addition, the Keap1/Nrf2 signaling pathway was significantly inhibited in the damaged MIN6 cells. Moreover, Nrf2 silencing by transfection with Nrf2 siRNA markedly exacerbated ALX-induced MIN6 cell injury. Conclusively, this study demonstrates that inhibition of the Keap1/Nrf2 signaling pathway could significantly promote the incidence of T1DM. This study indicates that activation of Keap1/Nrf2 signaling in pancreatic β-cells may be a useful pharmacological strategy for the clinical prevention and treatment of T1DM.


2021 ◽  
Author(s):  
Jinghe Li ◽  
Ryota Inoue ◽  
Yu Togashi ◽  
Tomoko Okuyama ◽  
Aoi Satoh ◽  
...  

The effects of imeglimin, a novel anti-diabetes agent, on β-cell function remain unclear. Here, we unveiled the impact of imeglimin on β-cell survival. Treatment with imeglimin augmented mitochondrial function, enhanced insulin secretion, promoted β-cell proliferation, and improved β-cell survival in mouse islets. Imeglimin upregulated the expression of endoplasmic reticulum (ER)-related molecules including <i>Chop (Ddit3),</i> <i>Gadd34</i> (<i>Ppp1r15a</i>), <i>Atf3</i>, and <i>Sdf2l1</i>, and decreased eIF2α phosphorylation, after treatment with thapsigargin, and restored global protein synthesis in β-cells under ER stress. Imeglimin failed to protect ER stress-induced β-cell apoptosis in CHOP-deficient islets or in the presence of GADD34 inhibitor. Treatment with imeglimin showed a significant decrease in the number of apoptotic β-cells and increased β-cell mass in Akita mice. Imeglimin also protected against β-cell apoptosis in both human islets and human pluripotent stem cell (<a>hPSC)-derived β-like cells</a>. <a>Taken together, imeglimin modulates ER homeostasis pathway, which results in the prevention of β-cell apoptosis both <i>in vitro</i> and <i>in vivo</i>.</a>


Sign in / Sign up

Export Citation Format

Share Document