Identification of Sounds with Multiple Timbres

Author(s):  
Jeffrey M. Gerth

The present research examined identification of complex sounds created by simultaneously playing two or more component sounds in various combinations. Sixteen component sounds were used, created by imposing four distinct temporal patterns on four basic timbres, two musical timbres and two complex real-world timbres. In the present experiment, complex sounds were created by simultaneously playing one to four component sounds, each with a different timbre. Subjects heard a complex sound, followed by a second complex sound that always differed from the first by adding a component, deleting a component or substituting a component. Subjects indicated which component had been added, deleted, or substituted. Sound changes were identified with moderate accuracy (above 60 percent). The errors committed varied with temporal pattern, timbre, sound change and density. The analyses of identification confusions indicated that subjects identified the correct timbre of the sound change even when temporal patterning was confused. The finding that temporal patterns were confused largely within the sound category of the correct response limits the previous interpretation of other research, which found that similar temporal patterns are confusable even with differences in spectra. Results of the present investigation suggest that multiple, temporal patterns with varying timbres can be presented from a single physical location to convey a change in state or status of an informative sound source. Design contributions of the present research to auditory information systems such as virtual reality are discussed. For such an application, a combination of physical separation and multiple patterns with varying timbres could provide a coherent, yet informationally complex, auditory display.

1992 ◽  
Vol 36 (3) ◽  
pp. 263-267
Author(s):  
Jeffrey M. Gerth

Previous research suggests that the temporal pattern of dissimilar sounds may be a basis for confusion. To extend this research, the present study used complex sounds formed by simultaneously playing components drawn from four sound categories. Four temporal patterns, determined by sound duration and duty cycle were also used, producing a total of 16 basic components. The density (i.e., number of components played simultaneously) ranged from one to four. Subjects heard a sequence of two complex sounds and judged whether they were same of different. For trials in which the sounds differed, there were three possible manipulations: the addition of a component, the deletion of a component, and the substitution of one component for another. Overall accuracy was 94 percent across the 144 dissimilar sound complexes. As density increased, a significantly greater number of errors occurred for all classes of manipulations. Changes in individual temporal patterns across a variety of manipulations of sounds involving adding, deleting and substituting components were accurately discriminated. Subjects were least accurate in detecting substitutions of a pattern. A single sound category was identified in error prone sequences which was most often involved as the changing component from first to second sound presentation. Suggestions for the design of easily discriminated sounds are discussed.


Author(s):  
Leonard K. Kaczmarek

All neurons express a subset of over seventy genes encoding potassium channel subunits. These channels have been studied in auditory neurons, particularly in the medial nucleus of the trapezoid body. The amplitude and kinetics of various channels in these neurons can be modified by the auditory environment. It has been suggested that such modulation is an adaptation of neuronal firing patterns to specific patterns of auditory inputs. Alternatively, such modulation may allow a group of neurons, all expressing the same set of channels, to represent a variety of responses to the same pattern of incoming stimuli. Such diversity would ensure that a small number of genetically identical neurons could capture and encode many aspects of complex sound, including rapid changes in timing and amplitude. This review covers the modulation of ion channels in the medial nucleus of the trapezoid body and how it may maximize the extraction of auditory information.All neurons express a subset of over seventy genes encoding potassium channel subunits. These channels have been studied in auditory neurons, particularly in the medial nucleus of the trapezoid body. The amplitude and kinetics of various channels in these neurons can be modified by the auditory environment. It has been suggested that such modulation is an adaptation of neuronal firing patterns to specific patterns of auditory inputs. Alternatively, such modulation may allow a group of neurons, all expressing the same set of channels, to represent a variety of responses to the same pattern of incoming stimuli. Such diversity would ensure that a small number of genetically identical neurons could capture and encode many aspects of complex sound, including rapid changes in timing and amplitude. This review covers the modulation of ion channels in the medial nucleus of the trapezoid body and how it may maximize the extraction of auditory information.


1985 ◽  
Vol 2 (4) ◽  
pp. 411-440 ◽  
Author(s):  
Dirk-Jan Povel ◽  
Peter Essens

To gain insight into the internal representation of temporal patterns, we studied the perception and reproduction of tone sequences in which only the tone-onset intervals were varied. A theory of the processing of such sequences, partly implemented as a computer program, is presented. A basic assumption of the theory is that perceivers try to generate an internal clock while listening to a temporal pattern. This internal clock is of a flexible nature that adapts itself to certain characteristics of the pattern under consideration. The distribution of accented events perceived in the sequence is supposed to determine whether a clock can (and which clock will) be generated internally. Further it is assumed that if a clock is induced in the perceiver, it will be used as a measuring device to specify the temporal structure of the pattern. The nature of this specification is formalized in a tentative coding model. Three experiments are reported that test different aspects of the model. In Experiment 1, subjects reproduced various temporal patterns that only differed structurally in order to test the hypothesis that patterns more readily inducing an internal clock will give rise to more accurate percepts. In Experiment 2, clock induction is manipulated experimentally to test the clock notion more directly. Experiment 3 tests the coding portion of the model by correlating theoretical complexity of temporal patterns based on the coding model with complexity judgments. The experiments yield data that support the theoretical ideas.


Author(s):  
Malte Asendorf ◽  
Moritz Kienzle ◽  
Rachel Ringe ◽  
Fida Ahmadi ◽  
Debaditya Bhowmik ◽  
...  

This paper presents Tiltification, a multi modal spirit level application for smartphones. The non-profit app was produced by students in the master project “Sonification Apps” in winter term 2020/21 at the University of Bremen. In the app, psychoacoustic sonification is used to give feedback on the device’s rotation angles in two plane dimensions, allowing users to level furniture or take perfectly horizontal photos. Tiltification supplements the market of spirit level apps with the unique feature of auditory information processing. This provides for additional benefit in comparison to a physical spirit level and for more accessibility for visu- ally and cognitively impaired people. We argue that the distribution of sonification apps through mainstream channels is a contribution to establish sonification in the market and make it better known to users outside the scientific domain. We hope that the auditory display community will support us by using and recommending the app and by providing valuable feedback on the app functionality and design, and on our communication, advertisement and distribution strategy.


2021 ◽  
Vol 11 (21) ◽  
pp. 10198
Author(s):  
Song Li ◽  
Roman Schlieper ◽  
Aly Tobbala ◽  
Jürgen Peissig

A headphone-based virtual sound image can not be perceived as perfectly externalized if the acoustic of the synthesized room does not match that of the real listening environment. This effect has been well explored and is known as the room divergence effect (RDE). The RDE is important for perceived externalization of virtual sounds if listeners are aware of the room-related auditory information provided by the listening environment. In the case of virtual reality (VR) applications, users get a visual impression of the virtual room, but may not be aware of the auditory information of this room. It is unknown whether the acoustic congruence between the synthesized (binaurally rendered) room and the visual-only virtual listening environment is important for externalization. VR-based psychoacoustic experiments were performed and the results reveal that perceived externalization of virtual sounds depends on listeners’ expectations of the acoustic of the visual-only virtual room. The virtual sound images can be perceived as externalized, although there is an acoustic divergence between the binaurally synthesized room and the visual-only virtual listening environment. However, the “correct” room information in binaural sounds may lead to degraded externalization if the acoustic properties of the room do not match listeners’ expectations.


2021 ◽  
Vol 263 (2) ◽  
pp. 4634-4640
Author(s):  
Nozomiko Yasui ◽  
Masanobu Miura ◽  
Tetsuya Shimamura

The motor sound on electric powered vehicle is quiet at low speeds. Thus, pedestrians have difficulty detecting the vehicles approaching them under urban noise. Although the vehicles were designed to play an alert sound to solve this problem, it has not been solved yet. Our previous studies found that characteristics of amplitude fluctuation, fluctuation frequency, non-periodic fluctuation and amplitude envelope, are effective to make them detect approaching vehicles. However, those studies were investigated under only a specific actual environment, weren't examined validity of detectability in those studies. Here, this paper investigates under another actual environment, examine the validity. Investigations were carried out by using synthesized complex sounds which were designed to have periodic and non-periodic amplitude fluctuations. Those complex sounds have characteristics of amplitude fluctuations in gasoline powered vehicle. Amplitude envelopes such as modulation wave in amplitude-modulated sound were set for deviations for time and amplitude, and amplitude-modulated complex sounds were synthesized using sine wave, sawtooth wave, and rectangle wave. Then, their effects on detectability by pedestrians were assessed in another actual environment. The results found that amplitude fluctuation enhances the ability with which people detect approaching electric powered vehicles in case of some complex sound.


2020 ◽  
pp. 1471082X2093976
Author(s):  
Meredith A. Ray ◽  
Dale Bowman ◽  
Ryan Csontos ◽  
Roy B. Van Arsdale ◽  
Hongmei Zhang

Earthquakes are one of the deadliest natural disasters. Our study focuses on detecting temporal patterns of earthquakes occurring along intraplate faults in the New Madrid seismic zone (NMSZ) within the middle of the United States from 1996–2016. Based on the magnitude and location of each earthquake, we developed a Bayesian clustering method to group hypocentres such that each group shared the same temporal pattern of occurrence. We constructed a matrix-variate Dirichlet process prior to describe temporal trends in the space and to detect regions showing similar temporal patterns. Simulations were conducted to assess accuracy and performance of the proposed method and to compare to other commonly used clustering methods such as Kmean, Kmedian and partition-around-medoids. We applied the method to NMSZ data to identify clusters of temporal patterns, which represent areas of stress that are potentially migrating over time. This information can then be used to assist in the prediction of future earthquakes.


1984 ◽  
Vol 93 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Aage R. Møsller

The hypothesis is presented that certain forms of tinnitus are related to abnormal phase-locking of discharges in groups of auditory nerve fibers. Recent developments in auditory neurophysiology have shown that neural coding of the temporal pattern of sounds plays an important role in the analysis of complex sounds. In addition, it has been demonstrated that when some other cranial nerves are damaged, artificial synapses can occur between individual nerve fibers such that ephaptic transmission between nerve fibers is facilitated. Such “crosstalk” between auditory nerve fibers is assumed to result in phase-locking of the spontaneous activity of groups of neurons which in the absence of external sounds creates a neural pattern that resembles that evoked by sounds.


2013 ◽  
Vol 118 (2) ◽  
pp. 376-381 ◽  
Author(s):  
Ryan A. Stevenson ◽  
Joseph J. Schlesinger ◽  
Mark T. Wallace

Abstract Background: Anesthesiology requires performing visually oriented procedures while monitoring auditory information about a patient’s vital signs. A concern in operating room environments is the amount of competing information and the effects that divided attention has on patient monitoring, such as detecting auditory changes in arterial oxygen saturation via pulse oximetry. Methods: The authors measured the impact of visual attentional load and auditory background noise on the ability of anesthesia residents to monitor the pulse oximeter auditory display in a laboratory setting. Accuracies and response times were recorded reflecting anesthesiologists’ abilities to detect changes in oxygen saturation across three levels of visual attention in quiet and with noise. Results: Results show that visual attentional load substantially affects the ability to detect changes in oxygen saturation concentrations conveyed by auditory cues signaling 99 and 98% saturation. These effects are compounded by auditory noise, up to a 17% decline in performance. These deficits are seen in the ability to accurately detect a change in oxygen saturation and in speed of response. Conclusions: Most anesthesia accidents are initiated by small errors that cascade into serious events. Lack of monitor vigilance and inattention are two of the more commonly cited factors. Reducing such errors is thus a priority for improving patient safety. Specifically, efforts to reduce distractors and decrease background noise should be considered during induction and emergence, periods of especially high risk, when anesthesiologists has to attend to many tasks and are thus susceptible to error.


2011 ◽  
Vol 91 (3) ◽  
pp. 339-347 ◽  
Author(s):  
Y. T. Wang ◽  
T. Q. Zhang ◽  
Q. C. Hu ◽  
I. P. O'Halloran ◽  
C. S. Tan ◽  
...  

Wang, Y. T., Zhang, T. Q., Hu, Q. C., O'Halloran, I. P., Tan, C. S. and Reid, K. 2011. Temporal patterns of soil phosphorus release to runoff during a rainfall event as influenced by soil properties and its effects on estimating soil P losses. Can. J. Soil Sci. 91: 339–347. The phosphorus (P) released in soil runoff during a rainfall event varies as labile P is depleted, and the dynamic pattern can be a function of soil P content and other soil properties. This study was conducted to determine the temporal pattern of runoff dissolved reactive P (DRP) concentration during a simulated rainfall event and the controlling soil properties. Soil samples were collected from six soil types across the province of Ontario, with 10 sites for each, to provide a wide range of soil test P (STP) levels. The instantaneous DRP concentration in surface runoff created during the rainfall event could be predicted by time t (min, since the onset of surface runoff) through a power function: DRP=αt−β, where α and β are constants representing initial potential of soil P release to runoff as DRP at the onset of surface runoff and DRP decrease rate with time, respectively. The values of α and β for a given soil could be determined by DPSM3-2 (Mehlich-3 P/Mehlich-3 Al) using the following formulas:[Formula: see text] The description of the temporal pattern of runoff DRP concentration during a rainfall event with the constants estimated using DPSM3−2 can aid in the prediction of soil runoff DRP loss.


Sign in / Sign up

Export Citation Format

Share Document