On the in vitro Fatigue Behavior of Human Dentin: Effect of Mean Stress

2004 ◽  
Vol 83 (3) ◽  
pp. 211-215 ◽  
Author(s):  
R.K. Nalla ◽  
J.H. Kinney ◽  
S.J. Marshall ◽  
R.O. Ritchie

Human dentin is susceptible to failure under repetitive cyclic-fatigue loading. This investigation seeks to address the paucity of data that reliably quantify this phenomenon. Specifically, the effect of alternating vs. mean stresses, characterized by the stress- or load-ratio R (ratio of minimum-to-maximum stress), was investigated for three R values (−1, 0.1, and 0.5). Dentin was observed to be prone to fatigue failure under cyclic stresses, with susceptibility varying, depending upon the stress level. The “stress-life” ( S/N) data obtained are discussed in the context of constant-life diagrams for fatigue failure. The results provide the first fatigue data for human dentin under tension-compression loading and serve to map out safe and unsafe regimes for failure over a wide range of in vitro fatigue lives (< 103 to > 106 cycles).

2022 ◽  
Vol 11 (1) ◽  
pp. 1-19
Author(s):  
Abbas Fathi ◽  
Georges El-Saikaly ◽  
Omar Chaallal

Reinforced concrete (RC) structures subjected to cyclic fatigue loading are prone to progressive damage. Among the types of structural damage, those leading to shear deficiencies can result in sudden rupture of structures without warning. Hence, RC structures deficient in shear urgently need retrofitting. The use of externally bonded (EB) fiber-reinforced polymer (FRP) composites presents many advantages and is a very promising technology for shear strengthening of RC structures. This paper encompasses a wide range of research findings related to the interaction between concrete and FRP under fatigue loading. The behavior of the bond between FRP and concrete plays a major role in the failure mode of FRP shear-strengthened structures especially under fatigue. Therefore, it is of interest to characterize the FRP/concrete interaction using appropriate models with respect to the influencing parameters. The paper will first discuss existing design guidelines and considerations related to the fatigue behavior of RC structures. A thorough review of available literature on EB-FRP/concrete bond in shear under cyclic fatigue loading will then be presented, with a focus on proposed bond-slip models and finite element studies of the FRP/concrete interface under fatigue loading.


2022 ◽  
pp. 1-9

OBJECTIVE The traditional anterior approach for multilevel severe cervical ossification of the posterior longitudinal ligament (OPLL) is demanding and risky. Recently, a novel surgical procedure—anterior controllable antedisplacement and fusion (ACAF)—was introduced by the authors to deal with these problems and achieve better clinical outcomes. However, to the authors’ knowledge, the immediate and long-term biomechanical stability obtained after this procedure has never been evaluated. Therefore, the authors compared the postoperative biomechanical stability of ACAF with those of more traditional approaches: anterior cervical discectomy and fusion (ACDF) and anterior cervical corpectomy and fusion (ACCF). METHODS To determine and assess pre- and postsurgical range of motion (ROM) (2 Nm torque) in flexion-extension, lateral bending, and axial rotation in the cervical spine, the authors collected cervical areas (C1–T1) from 18 cadaveric spines. The cyclic fatigue loading test was set up with a 3-Nm cycled load (2 Hz, 3000 cycles). All samples used in this study were randomly divided into three groups according to surgical procedures: ACDF, ACAF, and ACCF. The spines were tested under the following conditions: 1) intact state flexibility test; 2) postoperative model (ACDF, ACAF, ACCF) flexibility test; 3) cyclic loading (n = 3000); and 4) fatigue model flexibility test. RESULTS After operations were performed on the cadaveric spines, the segmental and total postoperative ROM values in all directions showed significant reductions for all groups. Then, the ROMs tended to increase during the fatigue test. No significant crossover effect was detected between evaluation time and operation method. Therefore, segmental and total ROM change trends were parallel among the three groups. However, the postoperative and fatigue ROMs in the ACCF group tended to be larger in all directions. No significant differences between these ROMs were detected in the ACDF and ACAF groups. CONCLUSIONS This in vitro biomechanical study demonstrated that the biomechanical stability levels for ACAF and ACDF were similar and were both significantly greater than that of ACCF. The clinical superiority of ACAF combined with our current results showed that this procedure is likely to be an acceptable alternative method for multilevel cervical OPLL treatment.


2005 ◽  
Vol 84 (4) ◽  
pp. 371-375 ◽  
Author(s):  
M. Staninec ◽  
R.K. Nalla ◽  
J.F. Hilton ◽  
R.O. Ritchie ◽  
L.G. Watanabe ◽  
...  

Exposed root surfaces frequently exhibit non-carious notches representing material loss by abrasion, erosion, and/or abfraction. Although a contribution from mechanical stress is often mentioned, no definitive proof exists of a cause-effect relationship. To address this, we examined dimensional changes in dentin subjected to cyclic fatigue in two different pH environments. Human dentin cantilever-beams were fatigued under load control in pH = 6 (n = 13) or pH = 7 (n = 13) buffer, with a load ratio ( R = minimum load/maximum load) of 0.1 and frequency of 2 Hz, and stresses between 5.5 and 55 MPa. Material loss was measured at high- and low-stress locations before and after cycling. Of the 23 beams, 7 withstood 1,000,000 cycles; others cracked earlier. Mean material loss in high-stress areas was greater than in low-stress areas, and losses were greater at pH = 6 than at pH = 7, suggesting that mechanical stress and lower pH both accelerate erosion of dentin surfaces.


2004 ◽  
Vol 821 ◽  
Author(s):  
Bree M. Sharratt ◽  
Reinhold H. Dauskardt

AbstractThe mechanisms associated with cycle-by-cycle damage accumulation resulting in fatigue crack propagation between a highly constrained polymer layer and an adjacent elastic substrate are explored. Specifically, cyclic fatigue-induced crack growth between a bisphenol F model epoxy system and a passivated silicon substrate under Mode I loading is reported. Preliminary findings regarding the effects of fatigue load ratio on interfacial crack growth rates are presented. While intermediate crack growth rates were significantly accelerated under cyclic loading, the near-threshold crack growth behavior under cyclic and monotonic loading was surprisingly similar.


Author(s):  
J. Nakai-Chapman ◽  
Y. H. Park ◽  
J. Sakai

Abstract Anisotropic composite materials have been extensively utilized in mechanical, automotive, aerospace and other engineering areas due to high strength-to-weight ratio, superb corrosion resistance, and exceptional thermal performance. As the use of composite materials increases, determination of material properties, mechanical analysis and failure of the structure become important for the design of composite structure. In particular, the fatigue failure is important to ensure that structures can survive in harsh environmental conditions. The non-homogeneous character of composites induces diverse failure modes of the constituent including fiber fracture, matrix cracking, fiber-matrix interface failure, and delamination. Non-homogeneity of composite materials makes their fatigue behavior very complex in comparison with traditional engineering materials. In this study, a progressive damage theory is extended to simulate fatigue failure of composite laminates under fatigue loading conditions. A residual material property degradation model was employed to predict fatigue damage due to arbitrary stress ratio without performing excessive quantities of testing. This generalized residual material property degradation rule is implemented into user subroutine USDFLD in ABAQUS through which material degradation states are updated over the progressive fatigue loading. The present computational method is verified by comparing the simulated results with the experimental data available in the literature.


2003 ◽  
Vol 66A (1) ◽  
pp. 10-20 ◽  
Author(s):  
R. K. Nalla ◽  
V. Imbeni ◽  
J. H. Kinney ◽  
M. Staninec ◽  
S. J. Marshall ◽  
...  

Author(s):  
Jaeki Kwon ◽  
Daeho Jeong ◽  
Inkyun Choi ◽  
Youngju Kim ◽  
Namsub Woo ◽  
...  

API X-80 steel is extensively used as a piping material in oil and gas industries with good combination of strength, toughness and resistance to H2S damage. Drill riser, for example, is a conduit providing a temporary extension of a subsea oil well to surface drilling facility and is in large part made of welded X-80 steel pipe. The riser system is subject to fatigue loading from wave and tidal motion, vortex induced vibration (VIV) and operating loads at low temperatures in corrosive environments. The reliability of drill riser system is extremely important and therefore the effects of environmental factors, including temperature and seawater, on fatigue crack propagation (FCP) behavior of X-80 steels, both BM (base metal) and WM (weld metal), need to be well understood. In this study, S-N fatigue and FCP tests were conducted on X-80 steel, including BM and WM, in air at 25 and −50°C and an R ratio of 0.1. The FCP tests were also performed on X-80 steel BM in artificial sea water at both cathodically and anodically controlled voltages. The fatigue behavior of X-80 steel at various testing conditions are discussed based on detailed optical micrographic and SEM fractographic observations.


2010 ◽  
Vol 636-637 ◽  
pp. 47-53 ◽  
Author(s):  
Luiz A. Bicalho ◽  
Claudinei dos Santos ◽  
R.C. Souza ◽  
M.R.J. Barboza ◽  
Carlos Antonio Reis Pereira Baptista

The cyclic fatigue life of 3mol%Y2O3-stabilized ZrO2 (3Y-TZP) ceramics doped with bioactive glass has been investigated. Samples of 3Y-TZP containing 3 or 5wt% of bioglass were sintered at 1300oC for 120 minutes. Sintered samples were characterized by relative density, XRD and SEM analysis. Mechanical properties of hardness and fracture toughness were determined using Vickers indentation method and Modulus of Rupture was determined by four-point bending testing. Furthermore, the reliability of the samples was estimated using Weibull statistic analysis. The cyclic fatigue life was estimated using four-point bending testing under frequency of 25Hz and stress ratio, R, of 0.1. Highly dense tetragonal ZrO2 samples were obtained after sintering and presented hardness of 10.5 and 11GPa, KIC of 6 and 7MPam1/2, bending strength of 320 and 450MPa and Weibull’ modulus of 6 and 7 for samples containing 5 or 3% of bioglass respectively. The fatigue behavior indicates that the increasing of stress level leads to decreasing of the number of cycles and the number of run-out specimens. Fatigue behavior was similar for the two compositions tested. Samples containing 3% of bioglass are more resistant (near 10%) to fatigue presenting cyclic fatigue life near to 250MPa while samples with 5% presented fatigue limit near to 220MPa.


1991 ◽  
Vol 30 (01) ◽  
pp. 35-39 ◽  
Author(s):  
H. S. Durak ◽  
M. Kitapgi ◽  
B. E. Caner ◽  
R. Senekowitsch ◽  
M. T. Ercan

Vitamin K4 was labelled with 99mTc with an efficiency higher than 97%. The compound was stable up to 24 h at room temperature, and its biodistribution in NMRI mice indicated its in vivo stability. Blood radioactivity levels were high over a wide range. 10% of the injected activity remained in blood after 24 h. Excretion was mostly via kidneys. Only the liver and kidneys concentrated appreciable amounts of radioactivity. Testis/soft tissue ratios were 1.4 and 1.57 at 6 and 24 h, respectively. Testis/blood ratios were lower than 1. In vitro studies with mouse blood indicated that 33.9 ±9.6% of the radioactivity was associated with RBCs; it was washed out almost completely with saline. Protein binding was 28.7 ±6.3% as determined by TCA precipitation. Blood clearance of 99mTc-l<4 in normal subjects showed a slow decrease of radioactivity, reaching a plateau after 16 h at 20% of the injected activity. In scintigraphic images in men the testes could be well visualized. The right/left testis ratio was 1.08 ±0.13. Testis/soft tissue and testis/blood activity ratios were highest at 3 h. These ratios were higher than those obtained with pertechnetate at 20 min post injection.99mTc-l<4 appears to be a promising radiopharmaceutical for the scintigraphic visualization of testes.


Sign in / Sign up

Export Citation Format

Share Document