Mechanical Behaviour of ZrO2-Bioglass Dental Ceramics under Cyclic Fatigue Loading

2010 ◽  
Vol 636-637 ◽  
pp. 47-53 ◽  
Author(s):  
Luiz A. Bicalho ◽  
Claudinei dos Santos ◽  
R.C. Souza ◽  
M.R.J. Barboza ◽  
Carlos Antonio Reis Pereira Baptista

The cyclic fatigue life of 3mol%Y2O3-stabilized ZrO2 (3Y-TZP) ceramics doped with bioactive glass has been investigated. Samples of 3Y-TZP containing 3 or 5wt% of bioglass were sintered at 1300oC for 120 minutes. Sintered samples were characterized by relative density, XRD and SEM analysis. Mechanical properties of hardness and fracture toughness were determined using Vickers indentation method and Modulus of Rupture was determined by four-point bending testing. Furthermore, the reliability of the samples was estimated using Weibull statistic analysis. The cyclic fatigue life was estimated using four-point bending testing under frequency of 25Hz and stress ratio, R, of 0.1. Highly dense tetragonal ZrO2 samples were obtained after sintering and presented hardness of 10.5 and 11GPa, KIC of 6 and 7MPam1/2, bending strength of 320 and 450MPa and Weibull’ modulus of 6 and 7 for samples containing 5 or 3% of bioglass respectively. The fatigue behavior indicates that the increasing of stress level leads to decreasing of the number of cycles and the number of run-out specimens. Fatigue behavior was similar for the two compositions tested. Samples containing 3% of bioglass are more resistant (near 10%) to fatigue presenting cyclic fatigue life near to 250MPa while samples with 5% presented fatigue limit near to 220MPa.

2008 ◽  
Vol 591-593 ◽  
pp. 628-633 ◽  
Author(s):  
Luiz A. Bicalho ◽  
R.C. Souza ◽  
Claudinei dos Santos ◽  
M.J.R. Barboza ◽  
Carlos Antonio Reis Pereira Baptista

In this work the cyclic fatigue life of 3mol.%Y2O3-stabilized zirconia polycrystalline ceramics, doped with 5%wt 3CaO.P2O5,-SiO2-MgO, has been investigated. Samples with 5 and 10%wt were cold uniaxial pressed (80MPa) and sintered in air at 1200 and 1300oC for 120 minutes. Sintered samples were characterized by X-Ray diffraction and Scanning Electronic Microscopy. Hardness and fracture toughness were determined using Vicker’s indentation method, and Modulus of Rupture was determined by four-point bending testing. Furthermore, the cyclic fatigue tests were also realized by four-point bending tests, under frequency of 25 Hz and stress ratio, R, of 0.1, for the best condition. In this condition, highly dense samples were obtained and presented values of hardness, fracture toughness and bending strength of 11.3 ±0.1GPa, 6.1±0.4MPa.m1/2 and 320±55MPa, respectively. The increasing of stress level leads to decreasing of the number of cycles and the number of run-out specimens. The stress induced tetragonal-monoclinic (t-m)-ZrO2 transformation, observed by X-Ray diffraction, contributes to the increasing of the fatigue life. Samples 3Y-TZP presents clearly a range of loading conditions where cyclic fatigue can be detected.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Rizwanulhaque Syed ◽  
Wei Jiang

Fatigue is the main source of almost half of whole mechanical failures. This research investigated the effect on cyclic fatigue behavior of stainless steel 304 (SS304) when including carbon nanotubes (CNTs) at the crack tip. The cyclic fatigue tests were conducted on compact tension (CT) specimens to establish the relationship between crack growth and the number of cycles (a-N). It is found that the incorporation of a small amount of CNTs increased the fatigue life of the SS304/metal. Micrographs showed that the enhancement in fatigue life is caused by CNTs dense arrangement around the crack tip, entangled with each other, and finer grain size. Smooth bonding at the interface of the CNTs and SS304 grains is also observed.


2016 ◽  
Vol 35 (3) ◽  
pp. 225-234 ◽  
Author(s):  
Hasan Kaya ◽  
Mehmet Uçar

AbstractIn this study, the effects of equal channel angular pressing (ECAP) on high-cycle fatigue and fatigue surface morphology of AA7075 have been investigated at a constant temperature (483 K) and the “C” route for four passes at ECAP process. ECAPed and as-received specimens were tested by four-point bending fatigue device. Fatigue tests were carried out by using 100, 120 and 140 MPa strength values. ECAPed specimens were characterized for each pass with optical microscope (OM), scanning electron microscope (SEM), energy-dispersive spectroscope (EDS), transmission electron microscope (TEM), selected area electron diffraction (SAED) and hardness measurements. Fracture surfaces of the specimens were also characterized with SEM. The results show that the highest hardness values (137 HV) and the best fatigue life (5.4 × 107for 100 MPa) were measured in ECAPed four-pass sample. For this reason hardness values and fatigue life were increased with increasing number of severe plastic deformation (SPD) process.


2005 ◽  
Vol 297-300 ◽  
pp. 1291-1296 ◽  
Author(s):  
Ki Weon Kang ◽  
Jung Kyu Kim ◽  
Heung Seob Kim

The goals of this paper are to identify the impact damage behavior of plain-weave E-glass/epoxy composites and predict the fatigue life of the composites with impact-induced damage under constant amplitude loading. To identify these behaviors, the low velocity impact and fatigue after impact tests are performed for glass/epoxy composites having two types of fiber orientations. The impact damage behavior is dependent on the fiber orientation of the composites. The fatigue life of the impacted composites can be identified through the prediction model, which was proposed on the carbon/epoxy laminates by authors regardless of fiber orientations.


2020 ◽  
Vol 54 (27) ◽  
pp. 4215-4230
Author(s):  
Marc-Claudel Deluy ◽  
Mohamed Khay ◽  
Anh Dung Ngo ◽  
Martine Dubé ◽  
Rajamohan Ganesan

The objective of this work is to investigate the effects of environmental conditions on the axial fatigue behavior of a carbon/epoxy plain-weave laminate with an embedded flaw subjected to a partially reversed cyclic load (stress ratio R = −0.1) in tension–compression. This specific material is more commonly used in aerospace engineering for the manufacturing of aircraft structural parts, which are directly exposed to various environmental conditions during service. Specific environmental and loading conditions that are appropriate to simulate real-life conditions are considered to observe and collect information about the material's behavior. For the investigation, dry and wet coupons were submitted to room temperature, 82 and 121 ℃ under loading frequencies of 7 and 15 Hz. A maximum allowable strain increase criterion is used to monitor the flaw growth threshold or delamination onset, during fatigue testing. The ultrasonic imaging (C-scan) technique is used to verify and confirm the delamination onset. Results show that the delamination onset strain increase criterion, along with fatigue life, generally decreased as the operating temperature and humidity were increased and that frequency had little effect on the delamination onset fatigue life. The S– N curves obtained from the tension–compression fatigue data were then compared to those of a previous work carried out in tension–tension fatigue loading. Results show a clear degradation in the delamination onset fatigue life of the coupons tested under tension–tension cyclic loading when the minimum tensile component of the cyclic load was replaced with a compressive load of the same magnitude.


2011 ◽  
Vol 361-363 ◽  
pp. 1669-1672
Author(s):  
Wen Xiao Zhang ◽  
Guo Dong Gao ◽  
Guang Yu Mu

The low cycle fatigue behavior was experimentally studied with the 3-dimension notched LD8 aluminum alloy specimens at 300°C. The 3- dimension stress-strain responses of specimens were calculated by means of the program ADINA. The multiaxial fatigue life prediction was carried out according to von Mises’s equivalent theory. The results from the prediction showed that the equivalent strain range can be served as the valid mechanics for predicting multiaxial high temperature and low cyclic fatigue life.


2018 ◽  
Vol 165 ◽  
pp. 08002 ◽  
Author(s):  
Hamza Lamnii ◽  
Moussa Nait-Abdelaziz ◽  
Georges Ayoub ◽  
Jean-Michel Gloaguen ◽  
Ulrich Maschke ◽  
...  

Polymers operating in various weathering conditions must be assessed for lifetime performance. Particularly, ultraviolet (UV) radiations alters the chemical structure and therefore affect the mechanical and fatigue properties. The UV irradiation alters the polymer chemical structure, which results into a degradation of the mechanical and fatigue behavior of the polymer. The polymer properties degradation due to UV irradiation is the result of a competitive process of chain scission versus post-crosslinking. Although few studied investigated the effect of UV irradiation on the mechanical behaviour of thermoplastics, fewer examined the UV irradiation effect on the fatigue life of polymers. This study focuses on investigating the effect of UV irradiation on the fatigue properties of bulk semi-crystalline polymer; the low density Polyethylene (LDPE). Tensile specimens were exposed to different dose values of UV irradiation then subjected to fatigue loading. The fatigue tests were achieved under constant stress amplitude at a frequency of 1Hz. The results show an important decrease of the fatigue limit with increasing absorbed UV irradiation dose.


Author(s):  
Jefferson Cuadra ◽  
Kavan Hazeli ◽  
Michael Cabal ◽  
Antonios Kontsos

The reliable characterization of fatigue behavior and progressive damage of advanced alloys relies on the monitoring and quantification of parameters such as strain localizations as a result of both crystallographic deformation mechanisms and bulk response. To this aim, this article attempts to directly correlate microstructural strain at specific fatigue life to global strain as well as surface roughness in Magnesium alloys. Strain at the grain scale is calculated using Digital Image Correlation (DIC), while surface topography gradients are computed using roughness data at different stages of the fatigue life. The results are further correlated to Electron Back Scatter Diffraction (EBSD) measurements which reveal the profuse and spatially inhomogeneous nature of the crystallographic deformation mechanisms related to yielding and fatigue crack initiation. Emphasis is given on using multimodal NDE data to formulate first a description of the current state of the material subjected to fatigue loading and on identifying conditions that can probabilistically drive the affected by both local and global response, governing degradation process.


2012 ◽  
Vol 25 (04) ◽  
pp. 273-280
Author(s):  
D. D. Quinteros ◽  
G. A. Abuja ◽  
M. Tarkanian ◽  
L. S. Maranda ◽  
K. Bubeck ◽  
...  

SummaryObjective: To determine if the mechanical properties (strength and stiffness) of a new prototype 4.5 mm broad locking plate (NP-LP) are comparable with those of a traditional 4.5 mm broad limited-contact self compression plate (LC-SCP), and to compare the bending and torsional properties of the NP-LP and LCSCP when used in osteotomized equine third metacarpal bones (MC3).Methods: The plates alone were tested in four-point bending single cycle to failure. The MC3-plate constructs were created with middiaphyseal osteotomies with a 1 cm gap. Constructs were tested in four-point bending single cycle to failure, four-point bending cyclic fatigue, and torsion single cycle to failure.Results: There were not any significant differences in bending strength and stiffness found between the two implants. The MC3-NP-LP construct was significantly stiffer than the MC3-LC-SCP in bending. No other biomechanical differences were found in bending, yield load in torsion, or mean composite rigidity. Mean cycles to failure for bending fatigue testing were similar for both constructs.Clinical significance: The NP-LP was comparable to the LC-SCP in intrinsic, as well as structural properties. The NP-LP construct was more rigid than the LC-SCP construct under four-point bending, and both constructs behaved similarly under four-point bending cyclic fatigue testing and torsion single cycle to failure. The new NP-LP implant fixation is biomechanically comparable to the LC-SCP in a simulated MC3 fracture.


Sign in / Sign up

Export Citation Format

Share Document