SwarmSim: a framework for modeling swarming unmanned aerial vehicles using hardware-in-the-loop

Author(s):  
Derek B Worth ◽  
Brian G Woolley ◽  
Douglas D Hodson

Unmanned Aerial Vehicle (UAV) swarm applications, algorithms, and control strategies have experienced steady growth and development over the past 15 years. Yet, to date, most swarm development efforts have gone untested and unimplemented. The major inhibitors to successful swarm implementation seem to include the cost of aircraft systems, government imposed airspace restrictions, and the lack of adequate modeling and simulation tools. This paper examines how the open-source OpenEaagles simulation framework was leveraged to bridge this gap to create Hardware-in-the-Loop (HIL) simulations. Leveraging OpenEaagles through software extension to create HIL simulations provides developers with a functional capability with which to develop and test the behaviors of scalable and modular swarms of autonomous UAVs. Using HIL-based simulations in this capacity provides assurance that defined behaviors will propagate to live flight tests in the real world. The demonstrations in the work show how the framework enhances and simplifies swarm development through encapsulation, possesses high modularity, provides realistic aircraft modeling, and is capable of simultaneously accommodating multiple hardware-piloted and purely simulated swarming UAVs during simulation.

2003 ◽  
Vol 47 (2) ◽  
pp. 103-112 ◽  
Author(s):  
L. Rieger ◽  
J. Alex ◽  
S. Winkler ◽  
M. Boehler ◽  
M. Thomann ◽  
...  

To ensure correctly operating control systems, the measurement and control equipment in WWTPs must be mutually consistent. The dynamic simulation of activated sludge systems could offer a suitable tool for designing and optimising control strategies. Ideal or simplified sensor models represent a limiting factor for comparability with field applications. More realistic sensor models are therefore required. Two groups of sensor models are proposed on the basis of field and laboratory tests: one for specific sensors and another for a classification of sensor types to be used with the COST simulation benchmark environment. This should lead to a more realistic test environment and allow control engineers to define the requirements of the measuring equipment as a function of the selected control strategy.


2010 ◽  
Vol 139 (5) ◽  
pp. 754-764 ◽  
Author(s):  
F. M. BAPTISTA ◽  
T. HALASA ◽  
L. ALBAN ◽  
L. R. NIELSEN

SUMMARYTargets for maximum acceptable levels of Salmonella in pigs and pork are to be decided. A stochastic simulation model accounting for herd and abattoir information was used to evaluate food safety and economic consequences of different surveillance and control strategies, based among others on Danish surveillance data. An epidemiological module simulated the Salmonella carcass prevalence for different scenarios. Cost-effectiveness analysis was used to compare the costs of the different scenarios with their expected effectiveness. Herd interventions were not found sufficient to attain Salmonella carcass prevalence <1%. The cost-effectiveness of abattoir interventions changed with abattoir size. The most cost-effective strategy included the use of steam vacuum and steam ultrasound. Given uncertainty of the effect of steam vacuum and steam ultrasound, model results should be updated as more information becomes available. This framework contributes to informed decision-making for a more cost-effective surveillance and control of Salmonella in pigs and pork.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Li Yu ◽  
Guang He ◽  
Shulong Zhao ◽  
Xiangke Wang ◽  
Lincheng Shen

The tilt trirotor unmanned aerial vehicle (UAV) is a novel aircraft that has broad application prospects in transportation. However, the development progress of the aircraft is slow due to the complicated control system and the high cost of the flight experiment. This work attempts to overcome the problem by developing a hardware-in-the-loop (HIL) simulation system based on a heavily developed and commercially available flight simulator X-Plane. First, the tilt trirotor UAV configuration and dynamic model are presented, and the parameters are obtained by conducting identification experiments. Second, taking the configuration of the aircraft into account, a control scheme composed of the mode transition strategy, hierarchical controller, and control allocation is proposed. Third, a full-scale flight model of the prototype is designed in X-Plane, and an interface program is completed for connecting the autopilot and X-Plane. Then, the HIL simulation system that consists of the autopilot, ground control station, and X-Plane is developed. Finally, the results of the HIL simulation and flight experiments are presented and compared. The results show that the HIL simulation system can be an efficient tool for verifying the performance of the proposed control scheme for the tilt trirotor UAV. The work contributes to narrowing the gap between theory and practice and provides an alternative verification method for the tilt trirotor UAV.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3381 ◽  
Author(s):  
Falko Ebe ◽  
Basem Idlbi ◽  
David Stakic ◽  
Shuo Chen ◽  
Christoph Kondzialka ◽  
...  

The fundamental changes in the energy sector, due to the rise of renewable energy resources and the possibilities of the digitalisation process, result in the demand for new methodologies for testing Smart Grid concepts and control strategies. Using the Power Hardware-in-the-Loop (PHIL) methodology is one of the key elements for such evaluations. PHIL and other in-the-loop concepts cannot be considered as plug’n’play and, for a wider adoption, the obstacles have to be reduced. This paper presents the comparison of two different setups for the evaluation of components and systems focused on undisturbed operational conditions. The first setup is a conventional PHIL setup and the second is a simplified setup based on a quasi-dynamic PHIL (QDPHIL) approach which involves fast and continuously steady state load flow calculations. A case study which analyses a simple superimposed voltage control algorithm gives an example for the actual usage of the quasi-dynamic setup. Furthermore, this article also provides a comparison and discussion of the achieved results with the two setups and it concludes with an outlook about further research.


Author(s):  
Rahel N. Stadler ◽  
Laura Maurer ◽  
Lisandra Aguilar-Bultet ◽  
Fabian Franzeck ◽  
Chantal Ruchti ◽  
...  

AbstractThe proportion of asymptomatic carriers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains elusive and the potential benefit of systematic screening during the SARS-CoV-2-pandemic is controversial. We investigated the proportion of asymptomatic inpatients who were identified by systematic screening for SARS-CoV-2 upon hospital admission. Our analysis revealed that systematic screening of asymptomatic inpatients detects a low total number of SARS-CoV-2 infections (0.1%), questioning the cost–benefit ratio of this intervention. Even when the population-wide prevalence was low, the proportion of asymptomatic carriers remained stable, supporting the need for universal infection prevention and control strategies to avoid onward transmission by undetected SARS-CoV-2-carriers during the pandemic.


Author(s):  
Jimoh Olarewaju Pedro ◽  
Aarti Panday ◽  
Laurent Dala

The paper presents the development of modelling and control strategies for a six-degree-of-freedom, unmanned combat aerial vehicle with the inclusion of the centre of gravity position travel during the straight-leg part of an in-flight refuelling manoeuvre. The centre of gravity position travel is found to have a parabolic variation with an increasing mass of aircraft. A nonlinear dynamic inversion-based neurocontroller is designed for the process under investigation. Three radial basis function neural networks are exploited in order to invert the dynamics of the system, one for each control channel. Modal and time-domain analysis results show that the dynamic properties of the aircraft are strongly influenced during aerial refuelling. The effectiveness of the proposed control law is demonstrated through the use of simulation results for an F-16 aircraft. The longitudinal neurocontroller provided interesting results, and performed better than a baseline nonlinear dynamic inversion controller without neural network. On the other hand, the lateral-directional nonlinear dynamic inversion-based neurocontroller did not perform well as the longitudinal controller. It was concluded that the nonlinear dynamic inversion-based neurocontroller could be applied to control an unmanned combat aerial vehicle during aerial refuelling.


Author(s):  
Sameh Zenned ◽  
Emna Aridhi ◽  
Abdelkader Mami

The number of installations of Micro-Grid or intelligent micro power networks will increase to quadruple by 2020.The purpose is to reduce the cost and the consumption of electricity in transmission and distribution networks, using a hybrid system powered by solar and wind sources, as well as integrating storage devices. This paper reviews and discusses the Micro-Grid Model. It describes various Micro-Grid components and different configurations. It also presents the model of two generation units (Photovoltaic and Wind Turbine). Then, a comparative study of different battery types used for large-scale electricity storage is carried out, followed by a review of control strategies.


2013 ◽  
Vol 198 ◽  
pp. 266-271 ◽  
Author(s):  
Paweł Rzucidło

This paper presents an experimental research simulator of an Unmanned Aerial Vehicle (UAV) and supporting systems, designed at the Department of Avionics and Control, Rzeszow University of Technology. The research simulator enables hardware-in-the-loop testing of an autopilot, actuators, the ground control station and telemetry modules. Particular hardware blocks can be integrated with real-time environment with the use of a CAN data bus, Ethernet interface and a set of popular serial interfaces. Current experiments support development and hardware-in-the-loop testing of advanced flight control and navigation systems of a small UAV (taking into account both the on-board and the ground segments).


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 331
Author(s):  
Alvaro Ortiz ◽  
Sergio Garcia-Nieto ◽  
Raul Simarro

Guidance, navigation, and control system design is, undoubtedly, one of the most relevant issues in any type of unmanned aerial vehicle, especially in the case of military missions. This task needs to be performed in the most efficient way possible, which involves trying to satisfy a set of requirements that are sometimes in opposition. The purpose of this article was to compare two different control strategies in conjunction with a path-planning and guidance system with the objective of completing military missions in the most satisfactory way. For this purpose, a novel dynamic trajectory-planning algorithm is employed, which can obtain an appropriate trajectory by analyzing the environment as a discrete 3D adaptive mesh and performs a softening process a posteriori. Moreover, two multivariable control techniques are proposed, i.e., the linear quadratic regulator and the model predictive control, which were designed to offer optimal responses in terms of stability and robustness.


Sign in / Sign up

Export Citation Format

Share Document