High-Frequency Signals (>400 Hz): A New Window in Electrophysiological Analysis of the Somatosensory System

2005 ◽  
Vol 36 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Y. Okada ◽  
I. Ikeda ◽  
T. Zhang ◽  
Y. Wang

High-frequency signals (HFSs) between 400–1500 Hz in Magnetoencephalography (MEG) and Electroencephalography (EEG) provide a new window in electrophysiological analysis of the somatosensory system in humans and in other animals. The HFS in the primary somatosensory (SI) cortex precedes the conventional N20. In the swine model, they appear to be due to spiking in thalamocortical axonal terminals and in the soma and dendrites of cortical neurons. These spiking activities seem to activate slower conductances in the pyramidal cells in layers II-III and V, which give rise to N20. The HFS monitoring may be useful for separately evaluating the electrophysiology of the subcortical and cortical components of the somatosensory pathway.

2005 ◽  
Vol 36 (4) ◽  
pp. 278-284 ◽  
Author(s):  
Hitoshi Mochizuki ◽  
Yoshikazu Ugawa

The recent revival of interest in high-frequency oscillation (HFO) is triggered by getting an opportunity to noninvasively monitor the timing of highly synchronized and rapidly repeating population spikes generated in the human somatosensory system. HFOs could be recorded from brainstem, cuneothalamic relay neurons, thalamus, thalamocortical radiation, thalamocortical terminals and cortex with deep brain or surface electrodes, or with magnetoencephalography. Here we briefly review the HFOs at each level of somatosensory pathways. HFOs recorded at brainstem might be produced by volume conduction from oscillations of the medial lemniscus. Thalamic HFOs at around 1000 Hz frequency would be generated within the somatosensory thalamus. Cortical HFOs would be generated by at least a few different mechanisms, thalamocortical projection terminals, interneurons and pyramidal cells of the primary sensory cortex. HFOs have been studied in several ways: their modulation by arousal changes, movements or drugs, their recovery function, effects of transcranial magnetic stimulation on them and also their changes in patients with various neurological diseases.


2009 ◽  
Vol 101 (3) ◽  
pp. 1160-1170 ◽  
Author(s):  
Jason W. Middleton ◽  
André Longtin ◽  
Jan Benda ◽  
Leonard Maler

Parallel sensory streams carrying distinct information about various stimulus properties have been observed in several sensory systems, including the visual system. What remains unclear is why some of these streams differ in the size of their receptive fields (RFs). In the electrosensory system, neurons with large RFs have short-latency responses and are tuned to high-frequency inputs. Conversely, neurons with small RFs are low-frequency tuned and exhibit longer-latency responses. What principle underlies this organization? We show experimentally that synchronous electroreceptor afferent (P-unit) spike trains selectively encode high-frequency stimulus information from broadband signals. This finding relies on a comparison of stimulus-spike output coherence using output trains obtained by either summing pairs of recorded afferent spike trains or selecting synchronous spike trains based on coincidence within a small time window. We propose a physiologically realistic decoding mechanism, based on postsynaptic RF size and postsynaptic output rate normalization that tunes target pyramidal cells in different electrosensory maps to low- or high-frequency signal components. By driving realistic neuron models with experimentally obtained P-unit spike trains, we show that a small RF is matched with a postsynaptic integration regime leading to responses over a broad range of frequencies, and a large RF with a fluctuation-driven regime that requires synchronous presynaptic input and therefore selectively encodes higher frequencies, confirming recent experimental data. Thus our work reveals that the frequency content of a broadband stimulus extracted by pyramidal cells, from P-unit afferents, depends on the amount of feedforward convergence they receive.


Author(s):  
Y. Sato ◽  
H. Mizuno ◽  
N. Matsumoto ◽  
Y. Ikegaya

AbstractDuring behavioral states of immobility, sleep, and anesthesia, the hippocampus generates high-frequency oscillations called ripples. Ripples occur simultaneously with synchronous neuronal activity in the neocortex, known as slow waves, and contribute to memory consolidation. During these ripples, various neocortical regions exhibit modulations in spike rates and local field activity irrespective of whether they receive direct synaptic inputs from the hippocampus. However, little is known about the subthreshold dynamics of the membrane potentials of neocortical neurons during ripples. We patch-clamped layer 2/3 pyramidal cells in the posterior parietal cortex (PPC), a neocortical region that is involved in allocentric spatial representation of behavioral exploration and sequential series of relevant action potentials during ripples. We simultaneously monitored the membrane potentials of post hoc-identified PPC neurons and the local field potentials of the hippocampus in anesthetized mice. More than 50% of the recorded PPC neurons exhibited significant depolarizations and/or hyperpolarizations during ripples. Histological inspections of the recorded neurons revealed that the ripple-modulated PPC neurons were distributed in the PPC in a spatially non-biased fashion. These results suggest that hippocampal ripples are widely but selectively associated with the subthreshold dynamics of the membrane potentials of PPC neurons even though there is no monosynaptic connectivity between the hippocampus and the PPC.


2005 ◽  
Vol 93 (6) ◽  
pp. 3504-3523 ◽  
Author(s):  
Kenji Morita ◽  
Kunichika Tsumoto ◽  
Kazuyuki Aihara

Recent in vitro experiments revealed that the GABAA reversal potential is about 10 mV higher than the resting potential in mature mammalian neocortical pyramidal cells; thus GABAergic inputs could have facilitatory, rather than inhibitory, effects on action potential generation under certain conditions. However, how the relationship between excitatory input conductances and the output firing rate is modulated by such depolarizing GABAergic inputs under in vivo circumstances has not yet been understood. We examine herewith the input–output relationship in a simple conductance-based model of cortical neurons with the depolarized GABAA reversal potential, and show that a tonic depolarizing GABAergic conductance up to a certain amount does not change the relationship between a tonic glutamatergic driving conductance and the output firing rate, whereas a higher GABAergic conductance prevents spike generation. When the tonic glutamatergic and GABAergic conductances are replaced by in vivo–like highly fluctuating inputs, on the other hand, the effect of depolarizing GABAergic inputs on the input–output relationship critically depends on the degree of coincidence between glutamatergic input events and GABAergic ones. Although a wide range of depolarizing GABAergic inputs hardly changes the firing rate of a neuron driven by noncoincident glutamatergic inputs, a certain range of these inputs considerably decreases the firing rate if a large number of driving glutamatergic inputs are coincident with them. These results raise the possibility that the depolarized GABAA reversal potential is not a paradoxical mystery, but is instead a sophisticated device for discriminative firing rate modulation.


2017 ◽  
Vol 117 (6) ◽  
pp. 2188-2208 ◽  
Author(s):  
Brian E. Kalmbach ◽  
Richard Gray ◽  
Daniel Johnston ◽  
Erik P. Cook

What do dendritic nonlinearities tell a neuron about signals injected into the dendrite? Linear and nonlinear dendritic components affect how time-varying inputs are transformed into action potentials (APs), but the relative contribution of each component is unclear. We developed a novel systems-identification approach to isolate the nonlinear response of layer 5 pyramidal neuron dendrites in mouse prefrontal cortex in response to dendritic current injections. We then quantified the nonlinear component and its effect on the soma, using functional models composed of linear filters and static nonlinearities. Both noise and waveform current injections revealed linear and nonlinear components in the dendritic response. The nonlinear component consisted of fast Na+ spikes that varied in amplitude 10-fold in a single neuron. A functional model reproduced the timing and amplitude of the dendritic spikes and revealed that they were selective to a preferred input dynamic (~4.5 ms rise time). The selectivity of the dendritic spikes became wider in the presence of additive noise, which was also predicted by the functional model. A second functional model revealed that the dendritic spikes were weakly boosted before being linearly integrated at the soma. For both our noise and waveform dendritic input, somatic APs were dependent on the somatic integration of the stimulus, followed a subset of large dendritic spikes, and were selective to the same input dynamics preferred by the dendrites. Our results suggest that the amplitude of fast dendritic spikes conveys information about high-frequency features in the dendritic input, which is then combined with low-frequency somatic integration. NEW & NOTEWORTHY The nonlinear response of layer 5 mouse pyramidal dendrites was isolated with a novel systems-based approach. In response to dendritic current injections, the nonlinear component contained mostly fast, variable-amplitude, Na+ spikes. A functional model accounted for the timing and amplitude of the dendritic spikes and revealed that dendritic spikes are selective to a preferred input dynamic, which was verified experimentally. Thus, fast dendritic nonlinearities behave as high-frequency feature detectors that influence somatic action potentials.


1986 ◽  
Vol 226 (1245) ◽  
pp. 421-444 ◽  

We assume that the mammalian neocortex is built up out of some six layers which differ in their morphology and their external connections. Intrinsic connectivity is largely excitatory, leading to a considerable amount of positive feedback. The majority of cortical neurons can be divided into two main classes: the pyramidal cells, which are said to be excitatory, and local cells (most notably the non-spiny stellate cells), which are said to be inhibitory. The form of the dendritic and axonal arborizations of both groups is discussed in detail. This results in a simplified model of the cortex as a stack of six layers with mutual connections determined by the principles of fibre anatomy. This stack can be treated as a multi-input-multi-output system by means of the linear systems theory of homogeneous layers. The detailed equations for the simulation are derived in the Appendix. The results of the simulations show that the temporal and spatial behaviour of an excitation distribution cannot be treated separately. Further, they indicate specific processing in the different layers and some independence from details of wiring. Finally, the simulation results are applied to the theory of visual receptive fields. This yields some insight into the mechanisms possibly underlying hypercomplexity, putative nonlinearities, lateral inhibition, oscillating cell responses, and velocity-dependent tuning curves.


2007 ◽  
Vol 98 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Jay Spampanato ◽  
Istvan Mody

Network activity in the 200- to 600-Hz range termed high-frequency oscillations (HFOs) has been detected in epileptic tissue from both humans and rodents and may underlie the mechanism of epileptogenesis in experimental rodent models. Slower network oscillations including theta and gamma oscillations as well as ripples are generated by the complex spike timing and interactions between interneurons and pyramidal cells of the hippocampus. We determined the activity of CA3 pyramidal cells, stratum oriens lacunosum-moleculare (O-LM) and s. radiatum lacunosum-moleculare (R-LM) interneurons during HFO in the in vitro low-Mg2+ model of epileptiform activity in GIN mice. In these animals, interneurons can be identified prior to cell-attached recordings by the expression of green-fluorescent protein (GFP). Simultaneous local field potential recordings from s. pyramidale and on-cell recordings of individual interneurons and principal cells revealed three primary firing behaviors of the active cells: 36% of O-LM interneurons and 60% of pyramidal cells fired action potentials at high frequencies during the HFO. R-LM interneurons were biphasic in that they fired at high frequency at the beginning of the HFO but stopped firing before its end. When considering only the highest frequency component of the oscillations most pyramidal cells fired on the rising phase of the oscillation. These data provide evidence for functional distinction during HFOs within otherwise homogeneous groups of O-LM interneurons and pyramidal cells.


1998 ◽  
Vol 80 (3) ◽  
pp. 1495-1513 ◽  
Author(s):  
Igor Timofeev ◽  
François Grenier ◽  
Mircea Steriade

Timofeev, Igor, François Grenier, and Mircea Steriade. Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. J. Neurophysiol. 80: 1495–1513, 1998. In the preceding papers of this series, we have analyzed the cellular patterns and synchronization of neocortical seizures occurring spontaneously or induced by electrical stimulation or cortical infusion of bicuculline under a variety of experimental conditions, including natural states of vigilance in behaving animals and acute preparations under different anesthetics. The seizures consisted of two distinct components: spike-wave (SW) or polyspike-wave (PSW) at 2–3 Hz and fast runs at 10–15 Hz. Because the thalamus is an input source and target of cortical neurons, we investigated here the seizure behavior of thalamic reticular (RE) and thalamocortical (TC) neurons, two major cellular classes that have often been implicated in the generation of paroxysmal episodes. We performed single and dual simultaneous intracellular recordings, in conjunction with multisite field potential and extracellular unit recordings, from neocortical areas and RE and/or dorsal thalamic nuclei under ketamine-xylazine and barbiturate anesthesia. Both components of seizures were analyzed, but emphasis was placed on the fast runs because of their recent investigation at the cellular level. 1) The fast runs occurred at slightly different frequencies and, therefore, were asynchronous in various cortical neuronal pools. Consequently, dorsal thalamic nuclei, although receiving convergent inputs from different neocortical areas involved in seizure, did not express strongly synchronized fast runs. 2) Both RE and TC cells were hyperpolarized during seizure episodes with SW/PSW complexes and relatively depolarized during the fast runs. As known, hyperpolarization of thalamic neurons deinactivates a low-threshold conductance that generates high-frequency spike bursts. Accordingly, RE neurons discharged prolonged high-frequency spike bursts in close time relation with the spiky component of cortical SW/PSW complexes, whereas they fired single action potentials, spike doublets, or triplets during the fast runs. In TC cells, the cortical fast runs were reflected as excitatory postsynaptic potentials appearing after short latencies that were compatible with monosynaptic activation through corticothalamic pathways. 3) The above data suggested the cortical origin of these seizures. To further test this hypothesis, we performed experiments on completely isolated cortical slabs from suprasylvian areas 5 or 7 and demonstrated that electrical stimulation within the slab induces seizures with fast runs and SW/PSW complexes, virtually identical to those elicited in intact-brain animals. The conclusion of all papers in this series is that complex seizure patterns, resembling those described at the electroencephalogram level in different forms of clinical seizures with SW/PSW complexes and, particularly, in the Lennox-Gastaut syndrome of humans, are generated in neocortex. Thalamic neurons reflect cortical events as a function of membrane potential in RE/TC cells and degree of synchronization in cortical neuronal networks.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2815 ◽  
Author(s):  
Karl Kratkiewicz ◽  
Rayyan Manwar ◽  
Ali Rajabi-Estarabadi ◽  
Joseph Fakhoury ◽  
Jurgita Meiliute ◽  
...  

The marked increase in the incidence of melanoma coupled with the rapid drop in the survival rate after metastasis has promoted the investigation into improved diagnostic methods for melanoma. High-frequency ultrasound (US), optical coherence tomography (OCT), and photoacoustic imaging (PAI) are three potential modalities that can assist a dermatologist by providing extra information beyond dermoscopic features. In this study, we imaged a swine model with spontaneous melanoma using these modalities and compared the images with images of nearby healthy skin. Histology images were used for validation.


Sign in / Sign up

Export Citation Format

Share Document