scholarly journals UV-Curing of Novel Tri-functional Melamine-phosphate Oligomer: An Effect of Coating With Polyurethane Acrylate Towards Mechanical, Thermal And Flame Retardant Properties

Author(s):  
Pundalik Mali ◽  
Narendra Sonawane ◽  
Nilesh Pawar ◽  
Vikas Patil

Abstract A novel melamine-phosphate trifunctional acrylate MPTO) was successfully synthesized via simple cyclization of hexamethylolmelamine (HMM) with phosphorous oxychloride (POCl3) followed by addition reaction of hydroxyethylmethacrylate (HEMA). The molecular structure of MPTO was identified by FTIR and 1H-NMR, 13C-NMR, and GC-MS spectra. The synthesized MPTO oligomer was impregnated with polyurethane acrylate to make the various formulation of UV-cured coatings. The polyurethanes-MPTO oligomers were coated on wood and galvanized steel panels. The properties of UV-cured PU-MPTO were studied by differential scanning calorimeter (DSC), while their crystallinity by X-ray diffraction analysis (XRD). The thermo-gravimetric analysis (TGA) exhibited a high char yield of 18.4% at 800 °C. Moreover, coating films show prominent flame retardancy with UL-94 V-0 rating and maximum limiting index value (LOI) values of 34.8%, which are much higher than the common polyurethane coatings. The polyurethane coatings cured with MPTO exhibited excellent mechanical properties were estimated various tests such as adhesion, pencil hardness, solvent resistance, flexibility, and corrosion test. The coating performance revealed that MPTO improves the mechanical, thermal, and flame retardant properties because their unique structure contains melamine-phosphate moiety and long aliphatic chains of an acrylate ester. These high-performance melamine-based UV-curable coatings are promising for extensive applications.

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1712 ◽  
Author(s):  
Sun-Yeo Mun ◽  
Cheol-Hong Hwang

Flame retardant cables were investigated using thermo-gravimetric analysis to measure the reference temperature and reference rate required for a fire spread simulation using a Fire Dynamics Simulator (FDS). Sensitivity analysis was also performed to understand the effects of the reference temperature and rate on the pyrolysis reactions. A two-step pyrolysis reaction was typically observed regardless of the cable type, and each pyrolysis reaction could be attributed to single or multiple components depending on the cable type and reaction order. Although the structures, compositions, and insulation performances of the cables differed considerably, the reference temperatures of the two-step pyrolysis reaction were extremely similar regardless of the cable type. Conversely, the reference rates of the different types of cables varied significantly. The sensitivity analysis results indicate that the mean values of the reference temperature and rate are sufficient to simulate the pyrolysis reactions of flame retardant cables. The results obtained herein also suggest that the heat transfer and pyrolysis reaction path associated with the multi-layered cable structure may be more important for accurately determining the ignition and fire spread characteristics, which are attributable to differences in cable structure, composition, and insulation performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ming-Yuan Shen ◽  
Chen-Feng Kuan ◽  
Hsu-Chiang Kuan ◽  
Chia-Hsun Chen ◽  
Jia-Hong Wang ◽  
...  

In this investigation, silane was grafted onto the surface of graphene nanosheets (GNSs) through free radical reactions, to form Si-O-Et functional groups that can undergo the sol-gel reaction. To improve the compatibility between the polymer matrix and the fillers, epoxy monomer was modified using a silane coupling agent; then, the functionalized GNSs were added to the modified epoxy to improve the thermal stability and strengthen the flame-retardant character of the composites. High-resolution X-ray photoelectron spectrometry reveals that when the double bonds in VTES are grafted to the surfaces of GNSs. Solid-state 29Si nuclear magnetic resonance presents that the distribution of the signal associated with the T3structure is wide and significant, indicating that the functionalization reaction of the silicone in the modified epoxy and VTES-GNSs increases the network-like character of the structures. Thermal gravimetric analysis, the integral procedure decomposition temperature, and limiting oxygen index demonstrate that the GNSs composites that contained silicon had a higher thermal stability and stronger flame-retardant character than pure epoxy. The dynamic storage modulus of all of the m-GNSs containing composites was significantly higher than that of the control epoxy, and the modulus of the composites increased with the concentration of m-GNSs.


2020 ◽  
Vol 32 (6) ◽  
pp. 803-812
Author(s):  
Yinchun Fang ◽  
Xinhua Liu ◽  
Wenqing Fei

PurposePET fiber is widely used in many fields, such as clothing and decorative materials. However, the high flammability and dripping problem restrict its applications. It is vital for PET fiber to overcome these two main drawbacks for practical applications.Design/methodology/approachIn this paper nacre-mimetic flame retardant coating of chitosan (CH) and Montmorillonite (MMT) was fabricated on PET fabrics through the layer-by-layer assembly method. The flame retardancy and anti-dripping performance of the treated PET fabric were investigated.FindingsThe results of limiting oxygen index (LOI) value and vertical burning test revealed the anti-dripping performance of PET fabrics which was greatly improved, while the flame retardancy has not been improved. The dripping phenomena was eliminated when the CH/MMT bilayers were over 5 BL. Thermo gravimetric analysis (TGA) results revealed that nacre-mimetic coated CH/MMT bilayers on PET fabrics would promote the char formation both under nitrogen atmosphere and under air atmosphere indicating the obviously condensed phase flame retardant action. scanning electron microscopy (SEM) images of the char residues revealed that coated PET fabrics would promote the formation of char.Research limitations/implicationsHowever, the char was an unstable char which would further combust to change the thermal degradation and combustion process of PET fabric. Though PET fabric coated by this CH/MMT nacre-mimetic system had no flame retardancy, the anti-dripping performance was greatly improved. This research would provide experimental basis for improving the anti-dripping performance for thermoplastic materials.Originality/valueThis research is the original research for the flame retardant treatment by fabrication nacre-mimetic CH/MMT coating on PET fabric, which has not been reported previously. This research would provide experimental basis for improving the anti-dripping performance for thermoplastic polymer fabrics.


2011 ◽  
Vol 284-286 ◽  
pp. 1831-1835
Author(s):  
Zheng Zhou Wang ◽  
Lin Liu ◽  
Gan Xin Jie ◽  
Ping Kai Jiang

Flame retarded ethylene-vinyl acetate copolymer (EVA) was prepared in a melt process containing melamine phosphate (MP), or MP in combination with dipentaerythritol (DPER) as flame retardants. The influence of MP and MP/DPER on flame retardant properties of EVA was investigated by limiting oxygen index (LOI) and UL 94 test. Thermal decomposition of the flame retardants and flame retarded EVA composites was studied by the thermogravimetric analysis. The results show that MP used alone in EVA does not exerts good flame retardancy, even at a loading of 50wt%. It is found that the flame retardant properties of the EVA/MP/DPER composites is greatly improved when a suitable amount of MP substituted by DPER. Moreover, mechanical properties of the EVA composites were studied.


2017 ◽  
Vol 47 (6) ◽  
pp. 1261-1290 ◽  
Author(s):  
Mangesh D Teli ◽  
Pintu Pandit ◽  
Santanu Basak

Flame retardant textiles are increasingly in demand. There have been a number of approaches by which textile material is made flame retardant. The plant extracts imparting such properties to lingo-cellulosic material has been studied in this work. The paper reports the application of green coconut ( Cocosnucifera Linn) shell extract which is a natural waste source onto jute fabric. The acidic coconut shell extract was applied in neutral and alkaline conditions on jute fabric in different concentrations. The emerging fabric showed good flame retardant properties which were measured by different standard flammability tests. The limiting oxygen index value found to increase by 48% after application of alkaline coconut shell extract as such and on concentrating the coconut shell extract, it was found to increase 81%. The thermo gravimetric behaviour and degradation mechanism were studied by using thermo gravimetric analysis in nitrogen atmosphere. The presence of different elements, chemical groups and the structural topography of the untreated and coconut shell extract-treated lingo-cellulosic fabric were analysed by attenuated total reflection-Fourier transform infrared, Scanning electron microscopy, energy dispersive X-ray analysis and phytochemical analysis tests. In addition to the flame retardant property, the treated fabric showed natural colour (measured by colour strength value) and antibacterial property against both gram positive and gram negative bacteria.


2014 ◽  
Vol 67 (11) ◽  
pp. 1688 ◽  
Author(s):  
Jinyun Zheng ◽  
Yujian Yu ◽  
Lulu Zhang ◽  
Xiaomin Zhen ◽  
Yufen Zhao

Two novel types of phosphate derivatives of phosphaphenanthrene with a high phosphorus content were prepared by phosphorylation reaction between either 2-(6-oxido-6H-dibenz<c,e><1,2>oxaphosphorin-6-yl)-methanol (ODOPM) or 2-(6-oxido-6H-dibenz<c,e><1,2>oxaphosphorin-6-yl)-1,4-benzenediol (ODOPB) and dialkyl phosphoryl chloride. The structures of all compounds were characterised by 1H NMR, 13C NMR, 31P NMR, Fourier transform infrared spectroscopy, and high-resolution mass spectrometry. The thermal stability of representative compounds was determined by thermal gravimetric analysis and differential scanning calorimetry. The results showed that the compounds have excellent resistance to oxidation, high thermal stability with an onset decomposition temperature above 200°C, and a high char yield over 25 %, owing to the high P content. The representative compound was added to conventional electrolytes of lithium-ion batteries as flame retardant additive, and the self-extinguishing time and ionic conductivity were measured. The result showed that the compounds have effective flame retardant properties.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5455
Author(s):  
Yun Hu ◽  
Guoqiang Zhu ◽  
Jinshuai Zhang ◽  
Jia Huang ◽  
Xixi Yu ◽  
...  

Novel UV-curable polyurethane acrylate (PUA) resins were developed from rubber seed oil (RSO). Firstly, hydroxylated rubber seed oil (HRSO) was prepared via an alcoholysis reaction of RSO with glycerol, and then HRSO was reacted with isophorone diisocyanate (IPDI) and hydroxyethyl acrylate (HEA) to produce the RSO-based PUA (RSO-PUA) oligomer. FT-IR and 1H NMR spectra collectively revealed that the obtained RSO-PUA was successfully synthesized, and the calculated C=C functionality of oligomer was 2.27 per fatty acid. Subsequently, a series of UV-curable resins were prepared and their ultimate properties, as well as UV-curing kinetics, were investigated. Notably, the UV-cured materials with 40% trimethylolpropane triacrylate (TMPTA) displayed a tensile strength of 11.7 MPa, an adhesion of 2 grade, a pencil hardness of 3H, a flexibility of 2 mm, and a glass transition temperature up to 109.4 °C. Finally, the optimal resin was used for digital light processing (DLP) 3D printing. The critical exposure energy of RSO-PUA (15.20 mJ/cm2) was lower than a commercial resin. In general, this work offered a simple method to prepare woody plant oil-based high-performance PUA resins that could be applied in the 3D printing industry.


2011 ◽  
Vol 399-401 ◽  
pp. 493-499
Author(s):  
Shao Lei Long ◽  
Yu Jiao Wu ◽  
Shan Wu

Abstract:The paper makes use of the ANSYS analysis software to simulate[1] the temperature field and calculate , and further proof the Synergy Effects of flame - retardant effect on OMMT and APP for PP/PA6 composts on the basis of the oxygen index (LOI),UL-94 testing and thermo gravimetric analysis (TGA) test. According to simulation and analysis , the simulation result of temperature field corresponds with the oxygen index (LOI), UL - 94 test results.


Author(s):  
Xin-chao Wang ◽  
Ya-peng Sun ◽  
Jie Sheng ◽  
Tie Geng ◽  
Lih-Sheng (Tom) Turng ◽  
...  

Abstract Polyurethane foams (PUFs) are found everywhere in our daily life, but they suffer from poor fire resistance. In this study, expansible graphite (EG) as flame retardant was incorporated into PUFs to improve material fire resistance. With the presence of EGs in the PU matrix, bubble size in PUF became smaller as confirmed by the scanning electron microscopy (SEM). The mass density of PUFs is directly proportional to the content of EG additive. The compression strengths of EG0/PUF and EG30/PUF decrease from 0.51 MPa to 0.29 MPa. The FTIR analysis of RPUFs showed that the addition of EGs did not change the functional group structures of RPUFs. Thermo-gravimetric analysis (TGA) testing results showed that the carbon residue weight of EG30/PUF is higher than other PU composite foams. The combination of TGA and FTIR indicated that the EG addition did not change the thermal decomposition products of EG0/PUF, but effectively inhibited its thermal decomposition rate. Cone calorimeter combustion tests indicated that the peak of the heat release rate (PHRR) of EG30/PUF significantly decreased to 100.5 kW/m2 compared to 390.6 kW/m2 for EG0/PUF. The ignition time of EG/PUF composites also increased from 2 s to 11 s with incorporation of 30wt% EGs. The limiting oxygen index (LOI) and UL-94 standard tests show that the LOI of EG30/PUF can reach 55 vol%, and go through V-0 level. This study showed that adding EG into PU foams could significantly improve the thermal stability and flame retardancy properties of EG/PUF composites without significantly sacrificing material compression strength. The research results provide useful guidelines on industrial production and applications of PUFs.


2012 ◽  
Vol 586 ◽  
pp. 172-176
Author(s):  
Hao Ran Zhou ◽  
Hao Cheng Yang ◽  
An Sun ◽  
Shuang Zhao

As the epoxy potting compound widely used, their flame retardant properties were concerned day by day.This paper neopentyl glycol phosphate melamine salt (NPM) was synthesised via phosphorus oxychloride as the acid source, neopentyl glycol as carbon source, melamine as gas source. The structure of NPM was characterized via infrared spectroscopic analysis (IR). Then the flame retardant properties of NPM/epoxy resin systerm were researched via the limiting oxygen index (LOI), vertical burning experiment, thermal gravimetric analysis (TGA) . The result shows that When the dosage of NPM is 27%, limiting oxygen index of epoxy resin have a extremum, is 32.4, char yield is 18.7% at 600°C. NPM can play a significant role in the improvement of the flame retardant properties of the epoxy.


Sign in / Sign up

Export Citation Format

Share Document