Polysulfide Crosslinked Cotton by Reaction of Chlorodeoxycellulose with Ethylenediamine Hydrosulfide

1976 ◽  
Vol 46 (4) ◽  
pp. 261-264 ◽  
Author(s):  
Tyrone L. Vigo

Cotton fabrics with polysulfide crosslinks were prepared by reacting chlorodeoxycellulose with ethylenediamine hydrosulfide in ethylenediamine at 54–100°C. The polysulfide fabrics had good wet wrinkle resistance (280°) and strength retention (above 65%). Oxidation of the crosslinked fabrics with hydrogen peroxide did not adversely affect these textile properties. The effect of reaction time and temperature, hydrosulfide concentration, reaction solvents, method of treatment, and degree of substitution of chlorodeoxycellulose on the strength and wrinkle resistance of the polysulfide crosslinked fabrics was determined.

2021 ◽  
Vol 16 ◽  
pp. 155892502110034
Author(s):  
Xiongfang Luo ◽  
Pei Cheng ◽  
Wencong Wang ◽  
Jiajia Fu ◽  
Weidong Gao

This study establishes an eco-friendly anti-wrinkle treating process for cotton fabric. Sodium hydroxide-liquid ammonia pretreatment followed by 6% (w/w) PU100 adding citric acid pad-cure-dry finishing. In this process, citric acid (CA) was used as the fundamental crosslinking agent during finishing because it is a non-formaldehyde based, cost-effective and well wrinkle resistance agent. Environmental-friendly waterborne polyurethane (WPU) was used as an additive to add to the CA finishing solution. Six commercial WPUs were systematically investigated. Fabric properties like wrinkle resistance, tensile strength retention, whiteness, durable press, softness, and wettability were well investigated. Fourier transform infrared spectra and X-ray diffraction spectra were also measured and discussed before and after adding waterborne polyurethane. Tentative mechanism of the interaction among the WPU, CA, and modified cotton fabrics is provided. The effect of cotton fabric pretreatment on fabric performance was also investigated. After the eco-process’s treatment, the fabric wrinkle resistant angle was upgraded to 271 ± 7°, tensile strength retention was maintained at 66.77% ± 3.50% and CIE whiteness was elevated to 52.13 ± 3.21, which are much better than the traditional CA anti-wrinkle finishing based on mercerized cotton fabrics. This study provides useful information for textile researchers and engineers.


2011 ◽  
Vol 332-334 ◽  
pp. 77-80 ◽  
Author(s):  
Chuan Jie Zhang ◽  
Hong Yang ◽  
Yun Liu ◽  
Ping Zhu

Cotton fabric with excellent antibacterial properties was obtained by treated with polyamide-amine (PAMAM) dendrimers as a carrier and silver nitrate as an antibacterial agent. The antibacterial cotton fabrics were prepared by the methods of one-bath process and two-bath process. Antibacterial activity of cotton fabrics treated by two different methods was good, but the antibacterial durability of cotton fabric treated with two-bath process was better than that treated with one-bath process. After 50 washing cycles, cotton fabric treated with two-bath process still had good antibacterial property and its inhibitory rate to Gram-positive S. aureus and Gram-negative E. coli was over 99 %. It was found that the breaking strength retention of finished cotton fabrics was 85.83 % and the decrease of cotton fabrics’ whiteness index was about 15 %.


2009 ◽  
Vol 67 ◽  
pp. 149-154
Author(s):  
K. Sasipriya ◽  
N. Gobi ◽  
R. Palanivelu ◽  
T.V. Ramachandran ◽  
V. Rajendran

Coating of nanoparticles on fabrics provides huge potential applications in textile industry. The microencapsulation process is used to encapsulate the nanosilica particles which is used to coat on the surface of fabrics and to observe the special properties such as anti-bacterial, wrinkle resistance, etc. The amorphous nano silica particles were prepared from the natural resources through chemical route. The encapsulated nano silica was prepared using sodium alginate as a wall material by the coacervation method. The prepared sample was coated on the surface of the fabrics by pad-dry-cure method. The anti-bacterial studies were carried out for the nano silica coated and uncoated fabrics and the results would demonstrate the antibacterial effectiveness of treated cotton fabrics. The basic properties like tensile strength, tear strength, air permeability, crease recovery and whiteness index have been analysed for the coated and uncoated fabrics.


2015 ◽  
Vol 17 (4) ◽  
pp. 23-31 ◽  
Author(s):  
Agnieszka Wróblewska ◽  
Edyta Makuch ◽  
Małgorzata Dzięcioł ◽  
Roman Jędrzejewski ◽  
Paweł Kochmański ◽  
...  

Abstract This work presents the studies on the optimization the process of allyl alcohol epoxidation over the Ti-SBA-15 catalyst. The optimization was carried out in an aqueous medium, wherein water was introduced into the reaction medium with an oxidizing agent (30 wt% aqueous solution of hydrogen peroxide) and it was formed in the reaction medium during the processes. The main investigated technological parameters were: the temperature, the molar ratio of allyl alcohol/hydrogen peroxide, the catalyst content and the reaction time. The main functions the process were: the selectivity of transformation to glycidol in relation to allyl alcohol consumed, the selectivity of transformation to diglycidyl ether in relation to allyl alcohol consumed, the conversion of allyl alcohol and the selectivity of transformation to organic compounds in relation to hydrogen peroxide consumed. The analysis of the layer drawings showed that in water solution it is best to conduct allyl alcohol epoxidation in direction of glycidol (selectivity of glycidol 54 mol%) at: the temperature of 10–17°C, the molar ratio of reactants 0.5–1.9, the catalyst content 2.9–4.0 wt%, the reaction time 2.7–3.0 h and in direction of diglycidyl ether (selectivity of diglycidyl ether 16 mol%) at: the temperature of 18–33°C, the molar ratio of reactants 0.9–1.65, the catalyst content 2.0–3.4 wt%, the reaction time 1.7–2.6 h. The presented method allows to obtain two very valuable intermediates for the organic industry.


1983 ◽  
Vol 1 (2) ◽  
pp. 145-154 ◽  
Author(s):  
John V. Beninate ◽  
Brenda J. Trask ◽  
Timothy A. Calamari ◽  
George L. Drake

Durable phosphorus-based flame retardants were applied to twill fabrics con taining cotton and wool to study the effect of wool on the flame retardancy and physical properties of the blend fabrics. The presence of wool in untreated blend fabrics caused burning rates to decrease and oxygen index values to increase as wool content increased in the blends. These effects were also observed in cotton/ wool blends treated with low levels of the Thps-urea-TMM flame retardant, but were less pronounced in fabrics treated at high levels. Thermogravimetric analyses were conducted to study the thermal degradation of the treated and untreated fabrics. The presence of wool in treated blend fabrics did not sig nificantly change strength retention, area shrinkage and wrinkle recovery values in comparison to similarly treated 100% cotton fabrics.


2006 ◽  
Vol 79 (4) ◽  
pp. 602-609
Author(s):  
Shuqin Zhou ◽  
Shaoyi Li ◽  
Huadong Bai

Abstract Acrylonitrile-butadiene rubber (NBR) in latex form was selectively hydrogenated by redox system consisting of hydrazine hydrate and hydrogen peroxide, with boric acid as catalyst. Soluble hydrogenated NBR latex was obtained; but the coagulated products were gelled on drying. This problem becomes the major obstacle for the hydrogenation technique to be commercialized. It is important to study the crosslinking reaction in the system and to solve the problem. The cause for the crosslink was investigated in three possibilities: (i) crosslinking caused by the hydrogenation of CN group; (ii) by the oxidation of C=C double bonds and (iii) by radicals in the system. The control of the crosslink was also studied. The oil resistant nitrile group —CN on the polymer chain had no change during drying process. There were no signs of carbonyl group C=O formed by oxidation and amine like groups -NH- formed by the hydrogenation of CN in HNBR gel fraction. The newly formed alkoxyl radicals were detected by ESR spectroscopy analysis in the hydrogenation system after specific reaction time. Crosslinking reaction was controlled to a large extent by using hydroquinone as gel inhibitor.


2017 ◽  
Vol 19 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Shuang Zhang ◽  
Long Zhang

Abstract In this paper, 2,5-furandicarboxylic acid (FDCA) was efficiently prepared by the direct oxidation of 5-hydroxymethylfurfural (5-HMF) using hydrogen peroxide (H2O2) in alkaline conditions without any catalysts. The effects of reaction parameters on the process were systematically investigated and the optimal parameters were obtained as follows: molar ratio of 5-HMF:KOH:H2O2 was 1:4:8, reaction temperature and reaction time were determined as 70°C and 15 minutes, respectively. Under these conditions, the yield of FDCA was 55.6% and the purity of FDCA could reach 99%. Moreover, we have speculated the detailed oxidation mechanism of 5-HMF assisted by hydrogen peroxide in alkaline condition to synthesize FDCA.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1078
Author(s):  
Hang Zhang ◽  
Zhipeng Ma ◽  
Yunpeng Min ◽  
Huiru Wang ◽  
Ru Zhang ◽  
...  

Several kinds of composite materials with phosphotungstic acid (PTA) as the catalyst were prepared with activated carbon as support, and their structures were characterized. According to the Box–Behnken central combination principle, the mathematical model of the heterogeneous system is established. Based on the single-factor experiments, the reaction temperature, the reaction time, the amount of hydrogen peroxide and the loading capacity of PTA were selected as the influencing factors to study the catalyzed oxidation of hydrogen peroxide and degradation of high molecular weight chitosan. The results of IR showed that the catalyst had a Keggin structure. The results of the mercury intrusion test showed that the pore structure of the supported PTA catalyst did not change significantly, and with the increase of PTA loading, the porosity and pore volume decreased regularly, which indicated that PTA molecules had been absorbed and filled into the pore of activated carbon. The results of Response Surface Design (RSD) showed that the optimum reaction conditions of supported PTA catalysts for oxidative degradation of high molecular weight chitosan by hydrogen peroxide were as follows: reaction temperature was 70 ℃, reaction time was 3.0 h, the ratio of hydrogen peroxide to chitosan was 2.4 and the catalyst loading was 30%. Under these conditions, the yield and molecular weight of water-soluble chitosan were 62.8% and 1290 Da, respectively. The supported PTA catalyst maintained high catalytic activity after three reuses, which indicated that the supported PTA catalyst had excellent catalytic activity and stable performance compared with the PTA catalyst.


2005 ◽  
Vol 40 (2) ◽  
pp. 145-154 ◽  
Author(s):  
Monika Wagner ◽  
James A. Nicell

Abstract The xenoestrogen alkylphenols 4-nonylphenol (3.4 mg/L) and octylphenol (6.0 mg/L) were oxidized by hydrogen peroxide using horseradish peroxidase (HRP) as a biocatalyst. Substrate transformation required about one mole of peroxide per mole of phenolic compound. A high degree of conversion of alkylphenol was achieved within a 3-h reaction time. In the case of 4-nonylphenol, HRP treatment led to complete disappearance of Microtox toxicity. Results of the yeast estrogen screen (YES) assay demonstrated that the reaction products of HRP-catalyzed 4-nonylphenol conversion lacked estrogenic activity. A new approach to the YES assay has been suggested based on observations made during this study.


2012 ◽  
Vol 15 (2) ◽  
Author(s):  
Agnieszka Wróblewska

AbstractsAs a result of phenol hydroxylation, two useful products can be received: hydroquinone and pyrocatechol. In this work the hydroxylation of phenol with hydrogen peroxide over the Ti-MWW catalyst has been studied. Optimization studies were performed by application of a statistical experimental design method utilizing a rotatable-uniform design. The influence of five parameters on the course of this process was examined: temperature (120-150°C), molar ratio of phenol/hydrogen peroxide (0.5-1.5), acetonitrile - solvent content (20- 50 wt%), catalyst - Ti-MWW content (8-18 wt%) and reaction time (60-120 min). The process description was based on four response functions: the conversion of phenol to organic compounds, the yield of pyrocatechol, the yield of hydroquinone and the conversion of phenol to tars. The most favourable parameters for the process of phenol hydroxylation were as follows: temperature 147-150°C, molar ratio of phenol/hydrogen peroxide 0.5-0.6, acetonitrile content 21-24 wt%, Ti-MWW content 10.3-10.6, reaction time 221-236 min. In summary, these the most favourable parameters allow one to obtain pyrocatechol with the yield of 18 mol%, hydroquinone with the yield of 20 mol%, at the conversion of phenol to organic compounds 38 mol% in relatively mild and safe conditions. These results also showed that Ti-MWWcatalyst can be a good substitute for TS-1 catalyst.


Sign in / Sign up

Export Citation Format

Share Document