scholarly journals Preparation of Liposomal Raloxifene-Graphene Nanosheet and Evaluation of Its In Vitro Anticancer Effects

Dose-Response ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 155932582110639
Author(s):  
Ahmed E. Altyar ◽  
Omar Fahmy

Background In current years, researchers have shown their prime interest in developing multifunctional drug delivery systems, especially against cancers, for effective anticancer outcomes. Methodology Raloxifene (RLX) loaded liposomal-graphene nanosheet (GNS) was developed. The novelty of this work was to enhance the solubilization of RLX and improvement of its bioavailability in the disease area. So, the selection of optimized formula design of experiment was implemented which produced the desired formula with the particle size of 156.333 nm. Further, encapsulation efficiency, in vitro release, and thermodynamic stability of optimized formulation were evaluated. The optimized formulation exhibited prolonged release of RLX for a longer period of 24 h, which can minimize the dose-related toxicity of the drug. Furthermore, optimized formulation demonstrated remarkable thermodynamic stability in terms of phase separation, creaming, and cracking. Results The cytotoxicity study on the A549 cell line exhibited significant ( P < .05) results in favor of optimized formulation than the free drug. The apoptotic activity was carried out by Annexin V staining and Caspase 3 analysis, which demonstrated remarkable promising results for optimized liposomal formulation. Conclusion From the findings of the study, it can be concluded that the novel optimized liposomal formulation could be pondered as a novel approach for the treatment of lung cancer.

Author(s):  
Mohammed Ibrahim ◽  
Alaa Zaky ◽  
Mohsen Afouna ◽  
Ahmed Samy

Carrier erythrocytes are emerging as one of the most promising biological drug delivery systems investigated in recent decades. Beside its biocompatibility, biodegradability and ability to circulate throughout the body, it has the ability to perform extended release system of the drug for a long period. The ultimate goal of this study is to introduce a new carrier system for Salbutamol, maintaining suitable blood levels for a long time, as atrial to resolve the problems of nocturnal asthma medication Therefore in this work we study the effect of time, temperature as well as concentration on the loading of salbutamol in human erythrocytes to be used as systemic sustained release delivery system for this drug. After the loading process is performed the carrier erythrocytes were physically and cellulary characterized. Also, the in vitro release of salbutamol from carrier erythrocytes was studied over time interval. From the results it was found that, human erythrocytes have been successfully loaded with salbutamol using endocytosis method either at 25 Co or at 37 Co . The highest loaded amount was 3.5 mg/ml and 6.5 mg/ml respectively. Moreover, the percent of cells recovery is 90.7± 1.64%. Hematological parameters and osmotic fragility behavior of salbutamol loaded erythrocytes were similar that of native erythrocytes. Scanning electron microscopy demonstrated that the salbutamol loaded cells has moderate change in the morphology. Salbutamol releasing from carrier cell was 43% after 36 hours in phosphate buffer saline. The releasing pattern of the drug from loaded erythrocytes showed initial burst release in the first hour followed by a very slow release, obeying zero order kinetics. It concluded that salbutamol is successfully entrapped into erythrocytes with acceptable loading parameters and moderate morphological changes, this suggesting that erythrocytes can be used as prolonged release carrier for salbutamol.


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2017 ◽  
Vol 9 (6) ◽  
pp. 100 ◽  
Author(s):  
Mona G. Arafa ◽  
Bassam M. Ayoub

Objective: The present work was aimed to prepare niosomes entrapping salbutamol sulphate (SS) using reversed phase evaporation method (REV).Methods: Niosomes were prepared by mixing span 60 and cholesterol in 1:1 molar ratio in chloroform, SS in water was then added to organic phase to form niosomal SS. Formulations after evaporation of chloroform, freeze centrifuged then lyophilized, were evaluated for particles size, polydispersity index (Pdi), zeta-potential, morphology, entrapment efficiency (EE%) and in vitro release. For pulmonary delivery; metered dose inhalers (MDI) were prepared by suspending SS niosomes equivalent to 20 mg SS in hydrofluoroalkane (HFA). The metered valve was investigated for leakage rate, the total number of puffs/canister, weight/puff, dose uniformity and particle size.Results: The results showed spherical niosomes with 400-451 nm particles that entrapped 66.19% of SS. 76.54±0.132% SS release from niosomes that showed a controlled release profile for 8h. The leakage test was not exceeding 4 mg/3 d, the number of puffs were up to 200puffs/canister, the dose delivered/puff was 0.1 mg and 0.64-4.51μm niosomal aerosol.Conclusion: The results indicate an encouraging strategy to formulate a controlled drug delivery by entrapping (SS) in niosomes which could be packaged into (MDI) that met the requirements of (USP) aerosols guidelines which offering a novel approach to respiratory delivery.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4707
Author(s):  
Maria Camilla Bergonzi ◽  
Marzia Vasarri ◽  
Giulia Marroncini ◽  
Emanuela Barletta ◽  
Donatella Degl’Innocenti

Thymoquinone (TQ) is the main active ingredient of Nigella sativa essential oil, with remarkable anti-neoplastic activities with anti-invasive and anti-migratory abilities on a variety of cancer cell lines. However, its poor water solubility, high instability in aqueous solution and pharmacokinetic drawbacks limits its use in therapy. Soluplus® and Solutol® HS15 were employed as amphiphilic polymers for developing polymeric micelles (SSM). Chemical and physical characterization studies of micelles are reported, in terms of size, homogeneity, zeta potential, critical micelle concentration (CMC), cloud point, encapsulation efficiency (EE%), load capacity (DL), in vitro release, and stability. This study reports for the first time the anti-migratory activity of TQ and TQ loaded in SSM (TQ-SSM) in the SH-SY5Y human neuroblastoma cell line. The inhibitory effect was assessed by the wound-healing assay and compared with that of the unformulated TQ. The optimal TQ-SSM were provided with small size (56.71 ± 1.41 nm) and spherical shape at ratio of 1:4 (Soluplus:Solutol HS15), thus increasing the solubility of about 10-fold in water. The entrapment efficiency and drug loading were 92.4 ± 1.6% and 4.68 ± 0.12, respectively, and the colloidal dispersion are stable during storage for a period of 40 days. The TQ-SSM were also lyophilized to obtain a more workable product and with increased stability. In vitro release study indicated a prolonged release of TQ. In conclusion, the formulation of TQ into SSM allows a bio-enhancement of TQ anti-migration activity, suggesting that TQ-SSM is a better candidate than unformulated TQ to inhibit human SH-SY5Y neuroblastoma cell migration.


2020 ◽  
Vol 21 (7) ◽  
pp. 2376
Author(s):  
Haiyan Zhou ◽  
Yuri Ikeuchi-Takahashi ◽  
Yoshiyuki Hattori ◽  
Hiraku Onishi

Recently, the potential of nanoparticles (NPs) in ulcerative colitis (UC) therapy has been increasingly demonstrated. Namely, anionic NPs have been found to be accumulated efficiently to the UC damaged area due to epithelial enhanced permeability and retention (eEPR) effect. Previously, a novel anionic nanogel system (NG(S)) was prepared, and evaluated for the efficacy and toxicity. In the present study, release behaviors and biodistribution were investigated in detail to elucidate the functional mechanisms. Rats with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis (UC) were used as biomodels. In vitro release was examined with or without the contents of the cecum or distal colon. Gastrointestinal distribution and plasma concentrations were investigated after the intragastric administration of 10 mg prednisolone (PD) eq./kg. At pH 1.2 and 6.8, release behaviors were slow, but controlled. Overall release was not markedly different irrespective of coexistence of intestinal contents. In in vivo studies, a large amount of PD was distributed in the lower parts of the gastrointestinal tract 6 and 12 h after administration with NG(S). PD accumulated well in the colonic parts, and prolonged release was noted. The systemic absorption of PD with NG(S) was hardly found. NG(S) concentrated the drug in the colon and showed controlled release. These behaviors were considered to lead to the previously reported good results, promotion of effectiveness and suppression of toxic side effects.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1847-1847
Author(s):  
Chirag Acharya ◽  
Mike Y Zhong ◽  
Daniel Tannenbaum ◽  
Michelle Chen ◽  
Matt Ma ◽  
...  

Abstract Abstract 1847 Aminopeptidases (AP) are necessary for the growth and development of malignant cells and have a selectively important role in the maintenance of intracellular amino acid (AA) levels in neoplastic cells. CHR2797 is a novel, low nanomolar inhibitor of the M1 family of AP, a group of metalloenzymes containing a central Zn2+ ion. CHR2797 has antiproliferative and apoptotic effects against MM in vitro by inducing the AA deprivation response (AADR). TST, an oral, chronically administered agent with a good safety profile has demonstrated activity in patients with relapsed/refractory AML and is currently under study as part of combination therapy for untreated elderly patients with AML. At the epigenetic regulatory level, Zn-dependent histone deacetylase (HDAC) cause the deacetylation of histone and non-histone cellular proteins which are critical for gene expression, inducing apoptosis and cell cycle arrest in cancer cells. LBH589 (Panobinostat) is an established pan-HDAC inhibitor with potent in vitro anti-cancer activity in many hematological malignancies. The clinical efficacy of Panobinostat is currently being studied in several Phase II/III clinical trials with particular promise seen in the treatment of MM. Here we examined the potential therapeutic effect of CHR2797, alone and with LBH589, against MM cells. Using MTS and CTG assays, CHR2797, at clinically achievable concentrations, decreased survival and proliferation in MM1S and IL-6-dependent ANBL6 cells, in the presence or absence of bone marrow stromal cells following 72 hours incubation. CHR2797 induces apoptosis in MM cells via activation of Caspase 3/7 and 9 but not Caspase 8. Significantly, CHR2797 (10 μM) induced apoptosis in patient MM cells, as seen by % of annexin V and PI from 22 + 1.5% to 39 + 2.3% after 48h incubation. Combined treatment with CHR2797 and LBH589 in MM cells (MM1S, ANBL6, and INA6) further reduced cell viability following 72 hour incubation when compared with CHR2797 treatment alone, as determined by CTG viability luminescent assay. Both drugs together also augmented growth inhibitory effects when compared with single agent alone, after 72 hours incubation followed by MTS assay. Importantly, the combination of both drugs increased caspase 3/7- & 9-mediated apoptosis than CHR2797 alone in these MM cells following 24h-treatment. Cell cycle analysis (CHR2797 at 1μM; LBH589 at 1 nM) showed an increased growth arrest in G0/G1 cells in MM1R cells treated with both drugs versus CHR2797 alone after 24 hours: 68.5±3.3% versus 36±2.5%. Furthermore, CHR2797 inhibited anti-apoptotic protein Mcl-1 in MM1R and U266 MM cells by immunoblottings. Combined treatment with CHR2797 and LBH589 further blocked Mcl-1 when compared with either treatment alone after 24 hours incubation. Together, these results show that the combination of CHR2797 and LBH589 enhanced anti-myeloma effects when compared with either drug alone. This combination, which also has the potential of being without overlapping clinical toxicities, provides a promising novel approach to anti-myeloma therapy. Disclosures: Singer: Cell Therapeutics, Inc: Employment, Equity Ownership. Richardson:Novartis: Membership on an entity's Board of Directors or advisory committees.


2020 ◽  
Vol 18 ◽  
Author(s):  
Amaravathi Murali Krishna ◽  
Venkatesh Dinnekere Putte Gowda ◽  
Roopa Karki

Background: Nanosponges is a novel approach of topical drug delivery, especially for the fungal infections. Nanosponges are a unique class of nanoparticles with three-dimensional nanostructure in nanometers wide cavities, which can encapsulate both hydrophilic and lipophilic substances, will provide increased efficacy and safety. Objective: To formulate and evaluate Bifonazole loaded nanosponges in hydrogels for the treatment of fungal diseases. Methods: Bifonazole-loaded nanosponges to be formulated using emulsion solvent diffusion technique. Interaction of drugethyl cellulose polymer along with other excipients’ was done by using FTIR as well as DSC. The nanosponges formulations were evaluated with different parameters. Results: Bifonazole loaded nanosponges’ particle size and zeta potential for formulations were between the range of 183.7 to 560.2 nm and –17.77 to –21.9 mV, respectively. Surface morphology of nanosponges by SEM disclosed that it was spherical and porous in nature. Drug entrapment efficiency was found to be 45.44 to 79.71%. The drug release study was done by using phosphate buffer pH 6.8. Further in vitro release data is fitted in to kinetic models. The optimized formulation M6 has incorporated hydrogels, further evaluated skin irritation, in vitro drug release, viscosity and pH using a rat model. Stability studies of hydrogel formulation MH2 revealed that no changes in in-vitro drug release, pH and drug content study at the completion of 6 months. Conclusion: Thus, it indicated that the prepared Bifonazole loaded nanosponges into hydrogel was stable. Hence, it could be a suitable dosage form for the cure of fungal infections in the skin.


2014 ◽  
Vol 70 (a1) ◽  
pp. C808-C808
Author(s):  
Urmi Dhagat ◽  
Joanna Woodcock ◽  
Chrystal Tiong ◽  
Jessica Holien ◽  
Carl Coolen ◽  
...  

14-3-3 proteins are a highly conserved family of dimeric phospho-serine binding proteins that modulate the functions of key cellular proteins involved in signaling. 14-3-3ζ plays a prominent role in signaling pathways leading to inhibition of apoptosis, sequestration of tumor suppressor proteins and activation of signalling pathways that promote growth. 14-3-3ζ expression is up-regulated in many human cancers and associated with enhanced survival of cancer cells. The significant association of 14-3-3ζ over expression with disease recurrence and chemo-resistance makes this protein an attractive candidate for anti-cancer therapy. The anti-apoptotic activity of 14-3-3ζ is entirely dependent on the dimeric state of the protein. Our studies have shown that 14-3-3ζ activity is regulated by sphingosine and other lipid analogs that render 14-3-3 phosphorylatable, disrupting its dimeric state thereby leading to apoptosis [1]. Structural studies and mutagenesis on 14-3-3ζ confirm that the dimeric state of 14-3-3ζ is stabilized by salt bridges that form across the dimer interface. Based on this we have carried out an in silico screen of a virtual library of drug-like small molecules to identify compounds that bind to the dimer interface of 14-3-3ζ. Candidate small molecules have been assessed for their ability to render 14-3-3ζ phosphorylatable in vitro and consequently we have identified a family of small molecules with 14-3-3ζ dimer-destabilizing properties. These small molecules induce apoptosis in leukemic cells by activating apoptotic mediators known to be regulated by dimeric 14-3-3. We have recently solved the crystal structure of 14-3-3ζ with one of our hit compounds bound at the dimer interface. Our results suggest that relatively small perturbations at the dimer interface, can destabilize the salt bridges that hold 14-3-3 dimers together, thus providing a novel approach to targeting 14-3-3 proteins for therapeutic benefit.


Sign in / Sign up

Export Citation Format

Share Document