scholarly journals Analysis of cable effect on dynamic motion of an underwater vehicle for welding of reaction pool

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401988676
Author(s):  
Zhandong Li ◽  
Jianguo Tao ◽  
Hao Sun ◽  
Yang Luo ◽  
Jingkui Li ◽  
...  

Remotely operated vehicle is a reliable tool in an emergency rescue and routing inspection of a reactor pool. In practice, a cable has been considered as an important part of a vehicle system (i.e. winch, vehicle, and cable) to evaluate and predict the mechanical characteristics, and this article presents a study on a dynamic mechanism modeling of a cable partially in water and air based on an omnidirectional motion, and a numerical simulation is employed. In this work, we programmed the model governed by a partial differential equation set, at the discrete time node which was transformed into an ordinary differential equation set regarded as an initial value problem. The dynamic mechanical characteristics of the lower endpoint (i.e. a connection point between vehicle and cable) and the upper endpoint (i.e. a connection point between cable and winch) were, respectively, quantified with acceleration and a compounded motion including a uniform and rolling motion. A dynamic-state mechanism test was carried out to verify an authenticity of the three-dimensional mechanical model and numerical solution in a circulating tank. The results demonstrated that the presented method was used to evaluate the dynamic mechanism, and held a potential to improve a vehicle design and control strategy.

2020 ◽  
Vol 12 (1) ◽  
pp. 703-717
Author(s):  
Yin Wei ◽  
Wang Jiaqi ◽  
Bai Xiaomin ◽  
Sun Wenjie ◽  
Zhou Zheyuan

AbstractThis article analyzes the technical difficulties in full-section backfill mining and briefly introduces the technical principle and advantages of backfilling combined with caving fully mechanized mining (BCCFM). To reveal the strata behavior law of the BCCFM workface, this work establishes a three-dimensional numerical model and designs a simulation method by dynamically updating the modulus parameter of the filling body. By the analysis of numerical simulation, the following conclusions about strata behavior of the BCCFM workface were drawn. (1) The strata behavior of the BCCFM workface shows significant nonsymmetrical characteristics, and the pressure in the caving section is higher than that in the backfilling section. φ has the greatest influence on the backfilling section and the least influence on the caving section. C has a significant influence on the range of abutment pressure in the backfilling section. (2) There exits the transition area with strong mine pressure of the BCCFM workface. φ and C have significant effect on the degree of pressure concentration but little effect on the influence range of strong mine pressure in the transition area. (3) Under different conditions, the influence range of strong mine pressure is all less than 6 m. This article puts forward a control strategy of mine pressure in the transition area, which is appropriately improving the strength of the transition hydraulic support within the influence range (6 m) in the transition area according to the pressure concentration coefficient. The field measurement value of Ji15-31010 workface was consistent with numerical simulation, which verifies the reliability of control strategy of the BCCFM workface.


2001 ◽  
Vol 10 (3) ◽  
pp. 312-330 ◽  
Author(s):  
Bernard Harper ◽  
Richard Latto

Stereo scene capture and generation is an important facet of presence research in that stereoscopic images have been linked to naturalness as a component of reported presence. Three-dimensional images can be captured and presented in many ways, but it is rare that the most simple and “natural” method is used: full orthostereoscopic image capture and projection. This technique mimics as closely as possible the geometry of the human visual system and uses convergent axis stereography with the cameras separated by the human interocular distance. It simulates human viewing angles, magnification, and convergences so that the point of zero disparity in the captured scene is reproduced without disparity in the display. In a series of experiments, we have used this technique to investigate body image distortion in photographic images. Three psychophysical experiments compared size, weight, or shape estimations (perceived waist-hip ratio) in 2-D and 3-D images for the human form and real or virtual abstract shapes. In all cases, there was a relative slimming effect of binocular disparity. A well-known photographic distortion is the perspective flattening effect of telephoto lenses. A fourth psychophysical experiment using photographic portraits taken at different distances found a fattening effect with telephoto lenses and a slimming effect with wide-angle lenses. We conclude that, where possible, photographic inputs to the visual system should allow it to generate the cyclopean point of view by which we normally see the world. This is best achieved by viewing images made with full orthostereoscopic capture and display geometry. The technique can result in more-accurate estimations of object shape or size and control of ocular suppression. These are assets that have particular utility in the generation of realistic virtual environments.


2013 ◽  
Vol 111 (3) ◽  
pp. 676-684 ◽  
Author(s):  
Edward J. Ciaccio ◽  
Christina A. Tennyson ◽  
Govind Bhagat ◽  
Suzanne K. Lewis ◽  
Peter H.R. Green

Author(s):  
Alireza Marzbanrad ◽  
Jalil Sharafi ◽  
Mohammad Eghtesad ◽  
Reza Kamali

This is report of design, construction and control of “Ariana-I”, an Underwater Remotely Operated Vehicle (ROV), built in Shiraz University Robotic Lab. This ROV is equipped with roll, pitch, heading, and depth sensors which provide sufficient feedback signals to give the system six degrees-of-freedom actuation. Although its center of gravity and center of buoyancy are positioned in such a way that Ariana-I ROV is self-stabilized, but the combinations of sensors and speed controlled drivers provide more stability of the system without the operator involvement. Video vision is provided for the system with Ethernet link to the operation unit. Control commands and sensor feedbacks are transferred on RS485 bus; video signal, water leakage alarm, and battery charging wires are provided on the same multi-core cable. While simple PI controllers would improve the pitch and roll stability of the system, various control schemes can be applied for heading to track different paths. The net weight of ROV out of water is about 130kg with frame dimensions of 130×100×65cm. Ariana-I ROV is designed such that it is possible to be equipped with different tools such as mechanical arms, thanks to microprocessor based control system provided with two directional high speed communication cables for on line vision and operation unit.


2012 ◽  
Vol 166-169 ◽  
pp. 277-281
Author(s):  
Xiang Dong Xie ◽  
Xuan Wang ◽  
Li Qin

The superstructure and its foundation of a super tall building mega-frame structure are simplified equivalently and continuously to a stiffened-thin-wall tube on semi-infinite elastic subgrade. And the influences of static response on super tall building mega-frame structure caused by changes of frame rigidity are computed and analyzed with the three-dimensional model by semi-analytical approach based on ODE(Ordinary Differential Equation) Solver, considering the interactions of subgrade, foundation and superstructure. Then some valuable conclusions are obtained through analyzing the reasonable results of the numerical example.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1268
Author(s):  
Yarong Xia ◽  
Ruoxia Yao ◽  
Xiangpeng Xin ◽  
Yan Li

In this paper, we provide a method to construct nonlocal symmetry of nonlinear partial differential equation (PDE), and apply it to the CKdV (CKdV) equations. In order to localize the nonlocal symmetry of the CKdV equations, we introduce two suitable auxiliary dependent variables. Then the nonlocal symmetries are localized to Lie point symmetries and the CKdV equations are extended to a closed enlarged system with auxiliary dependent variables. Via solving initial-value problems, a finite symmetry transformation for the closed system is derived. Furthermore, by applying similarity reduction method to the enlarged system, the Painlevé integral property of the CKdV equations are proved by the Painlevé analysis of the reduced ODE (Ordinary differential equation), and the new interaction solutions between kink, bright soliton and cnoidal waves are given. The corresponding dynamical evolution graphs are depicted to present the property of interaction solutions. Moreover, With the help of Maple, we obtain the numerical analysis of the CKdV equations. combining with the two and three-dimensional graphs, we further analyze the shapes and properties of solutions u and v.


Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


1993 ◽  
Vol 115 (1) ◽  
pp. 121-127 ◽  
Author(s):  
E. Bonataki ◽  
P. Chaviaropoulos ◽  
K. D. Papailiou

The calculation of the blade shape, when the desired velocity distribution is imposed, has been the object of numerous investigations in the past. The object of this paper is to present a new method suitable for the design of turbomachinery stator and rotor blade sections, lying on an arbitrary axisymmetric stream-surface with varying streamtube width. The flow is considered irrotational in the absolute frame of reference and compressible. The given data are the streamtube geometry, the number of blades, the inlet flow conditions and the suction and pressure side velocity distributions as functions of the normalized arc-length. The output of the computation is the blade shape that satisfies the above data. The method solves an elliptic type partial differential equation for the velocity modulus with Dirichlet and periodic type boundary conditions on the (potential function, stream function)-plane (Φ, Ψ). The flow angle field is subsequently calculated solving an ordinary differential equation along the iso-Φ or iso-Ψ lines. The blade coordinates are, finally, computed by numerical integration. A set of closure conditions has been developed and discussed in the paper. The method is validated on several test cases and a discussion is held concerning its application and limitations.


Sign in / Sign up

Export Citation Format

Share Document