scholarly journals Real-time GNSS precise positioning: RTKLIB for ROS

2020 ◽  
Vol 17 (3) ◽  
pp. 172988142090452 ◽  
Author(s):  
António Ferreira ◽  
Bruno Matias ◽  
José Almeida ◽  
Eduardo Silva

The global navigation satellite system (GNSS) constitutes an effective and affordable solution to the outdoor positioning problem. When combined with precise positioning techniques, such as the real time kinematic (RTK), centimeter-level positioning accuracy becomes a reality. Such performance is suitable for a whole new range of demanding applications, including high-accuracy field robotics operations. The RTKRCV, part of the RTKLIB package, is one of the most popular open-source solutions for real-time GNSS precise positioning. Yet the lack of integration with the robot operating system (ROS), constitutes a limitation on its adoption by the robotics community. This article addresses this limitation, reporting a new implementation which brings the RTKRCV capabilities into ROS. New features, including ROS publishing and control over a ROS service, were introduced seamlessly, to ensure full compatibility with all original options. Additionally, a new observation synchronization scheme improves solution consistency, particularly relevant for the moving-baseline positioning mode. Real application examples are presented to demonstrate the advantages of our rtkrcv_ros package. For community benefit, the software was released as an open-source package.

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Yuechen Wang ◽  
Jun Shen

Abstract The wide area precise positioning system (WAPPS) is a high-precision positioning system based on a global navigation satellite system. Using a GEO satellite or a communication network, it provides users, in its service area, with real-time satellite orbit, clock, and other corrections. Users can achieve centimeter-level static positioning or decimeter-level kinematic positioning by precise point positioning. With the demands for applications of both high-precision and safety of life in real time, WAPPS is facing urgent needs to improve its service integrity. This study presents a real-time integrity monitoring approach for WAPPS. Using dual-frequency ionosphere-free corrections of GPS and BDS, along with monitor station data, related error models are established and the integrity monitoring is achieved, based on the analysis of satellite corrected residuals. In addition, satellite faults are simulated for performance verification. The results show that the algorithm can monitor both step and drift faults effectively and alert users in time.


2021 ◽  
Vol 11 (3) ◽  
pp. 1065
Author(s):  
Yuan Yang ◽  
Yongjiang Huang ◽  
Haoran Yang ◽  
Tingting Zhang ◽  
Zixuan Wang ◽  
...  

For the application of the autonomous guidance of a quadrotor from confined undulant ground, terrain-following is the major issue for flying at a low altitude. This study has modified the open-source autopilot based on the integration of a multi-sensor receiver (a Global Navigation Satellite System (GNSS)), a Lidar-lite (a laser-range-finder device), a barometer and a low-cost inertial navigation system (INS)). These automatically control the position, attitude and height (a constant clearance above the ground) to allow terrain-following and avoid obstacles based on multi-sensors that maintain a constant height above flat ground or with obstacles. The INS/Lidar-lite integration is applied for the attitude and the height stabilization, respectively. The height control is made by the combination of an extended Kalman filter (EKF) estimator and a cascade proportional-integral-derivative (PID) controller that is designed appropriately for the noise characteristics of low accuracy sensors. The proposed terrain-following is tested by both simulations and real-world experiments. The results indicate that the quadrotor can continuously navigate and avoid obstacles at a real-time response of reliable height control with the adjustment time of the cascade PID controller improving over 50% than that of the PID controller.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2810
Author(s):  
Krzysztof Naus ◽  
Piotr Szymak ◽  
Paweł Piskur ◽  
Maciej Niedziela ◽  
Aleksander Nowak

Undoubtedly, Low-Altitude Unmanned Aerial Vehicles (UAVs) are becoming more common in marine applications. Equipped with a Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) receiver for highly accurate positioning, they perform camera and Light Detection and Ranging (LiDAR) measurements. Unfortunately, these measurements may still be subject to large errors-mainly due to the inaccuracy of measurement of the optical axis of the camera or LiDAR sensor. Usually, UAVs use a small and light Inertial Navigation System (INS) with an angle measurement error of up to 0.5∘ (RMSE). The methodology for spatial orientation angle correction presented in the article allows the reduction of this error even to the level of 0.01∘ (RMSE). It can be successfully used in coastal and port waters. To determine the corrections, only the Electronic Navigational Chart (ENC) and an image of the coastline are needed.


2021 ◽  
Vol 14 (2) ◽  
pp. 105
Author(s):  
Maelckson Bruno Barros Gomes ◽  
André Luis Silva Santos

<p class="04CorpodoTexto">Este artigo tem por objetivo aplicar geotecnologias para obtenção de informações planialtimétricas a fim de avaliar a viabilidade de implantação do campus Centro Histórico/Itaqui-Bacanga do IFMA. Considerando que para realização de levantamento por métodos tradicionais é recomendado que seja realizado o destocamento e a limpeza do terreno previamente, avaliou-se a realização do levantamento planialtimétrico a partir de um par de receptores <em>Global Navigation Satellite System</em> (GNSS) pelo método <em>Real Time Kinematic</em> (RTK) pós processado e também a partir da realização de levantamento fotogramétrico, utilizando aeronave remotamente pilotada (ARP), popularmente conhecida como drone. Esta análise permitiu demonstrar que o aerolevantamento com a ARP pode ser aplicado na concepção inicial de um projeto de engenharia, conforme classificação do Tribunal de Contas da União (TCU) para níveis de precisão, pois obteve-se uma diferença orçamentária de 19% entre os projetos elaborados a partir das duas geotecnologias.</p><div> </div>


2016 ◽  
Vol 12 (03) ◽  
pp. 64
Author(s):  
Haifeng Hu

Abstract—An online automatic disaster monitoring system can reduce or prevent geological mine disasters to protect life and property. Global Navigation Satellite System receivers and the GeoRobot are two kinds of in-situ geosensors widely used for monitoring ground movements near mines. A combined monitoring solution is presented that integrates the advantages of both. In addition, a geosensor network system to be used for geological mine disaster monitoring is described. A complete online automatic mine disaster monitoring system including data transmission, data management, and complex data analysis is outlined. This paper proposes a novel overall architecture for mine disaster monitoring. This architecture can seamlessly integrate sensors for long-term, remote, and near real-time monitoring. In the architecture, three layers are used to collect, manage and process observation data. To demonstrate the applicability of the method, a system encompassing this architecture has been deployed to monitor the safety and stability of a slope at an open-pit mine in Inner Mongolia.


Author(s):  
George K. Chang ◽  
Kiran Mohanraj ◽  
William A. Stone ◽  
Daniel J. Oesch ◽  
Victor (Lee) Gallivan

Intelligent compaction (IC) is an emerging technology with rollers equipped with global navigation satellite system (GNSS), an accelerometer-based measurement system, and an onboard color-coded display for real-time monitoring and compaction control. Paver-mounted thermal profiling (PMTP) is used to monitor asphalt surface temperatures behind a paver with a thermal scanner, and to track paver speeds, stops, and stop durations. Leveraging both IC and PMTP technologies allows for paving and compaction controls in real time, and for executing appropriate adjustments as needed. A case study is used to demonstrate the advantage of using both IC and PMTP over conventional operations. Postconstruction asphalt coring and tests, as well as pavement profile surveys were conducted to provide asphalt density data and pavement smoothness acceptance data for comparison and correlation analysis with IC and PMTP data. The data from 2 days of operations, one without the Material Transfer Vehicle (MTV) and another with the MTV, were analyzed and compared to illustrate the benefits of using IC, PMTP, and MTV for producing quality pavement products. Durability and smoothness are two key construction qualities for agencies and users of hot mix asphalt (HMA) pavements. These two factors also affect the long-term structural and functional pavement performance.


2018 ◽  
Vol 71 (4) ◽  
pp. 769-787 ◽  
Author(s):  
Ahmed El-Mowafy

Real-time Precise Point Positioning (PPP) relies on the use of accurate satellite orbit and clock corrections. If these corrections contain large errors or faults, either from the system or by meaconing, they will adversely affect positioning. Therefore, such faults have to be detected and excluded. In traditional PPP, measurements that have faulty corrections are typically excluded as they are merged together. In this contribution, a new PPP model that encompasses the orbit and clock corrections as quasi-observations is presented such that they undergo the fault detection and exclusion process separate from the observations. This enables the use of measurements that have faulty corrections along with predicted values of these corrections in place of the excluded ones. Moreover, the proposed approach allows for inclusion of the complete stochastic information of the corrections. To facilitate modelling of the orbit and clock corrections as quasi-observations, International Global Navigation Satellite System Service (IGS) real-time corrections were characterised over a six-month period. The proposed method is validated and its benefits are demonstrated at two sites using three days of data.


2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.


2020 ◽  
Vol 10 (6) ◽  
pp. 1952 ◽  
Author(s):  
Xugang Lian ◽  
Zoujun Li ◽  
Hongyan Yuan ◽  
Haifeng Hu ◽  
Yinfei Cai ◽  
...  

Surface movement and deformation induced by underground coal mining causes slopes to collapse. Global Navigation Satellite System (GNSS) real-time monitoring can provide early warnings and prevent disasters. A stability analysis of high-steep slopes was conducted in a long wall mine in China, and a GNSS real-time monitoring system was established. The moving velocity and displacement at the monitoring points were an integrated response to the influencing factors of mining, topography, and rainfall. Underground mining provided a continuous external driving force for slope movement, the steep terrain provided sufficient slip conditions in the slope direction, and rainfall had an acceleration effect on slope movement. The non-uniform deformation, displacement field, and time series images of the slope body revealed that ground failure was concentrated in the area of non-uniform deformation. The non-uniform deformation was concentrated ahead of the working face, the speed of deformation behind the working face was reduced, the instability of the slope body was increased, and the movement of the top of the slope was larger than at the foot. The high-steep slope stability in the mine was influenced by the starting deformation (low stability), iso-accelerated deformation (increased stability), deformation deceleration (reduced stability), and deformation remaining unchanged (improved stability).


Sign in / Sign up

Export Citation Format

Share Document