scholarly journals Gas-phase elemental mercury removal by nano-ceramic material

2020 ◽  
Vol 10 ◽  
pp. 184798041989975
Author(s):  
Tao Zhu ◽  
Weidong Jing ◽  
Xing Zhang ◽  
Wenjing Bian ◽  
Yiwei Han ◽  
...  

The nano-ceramic which is mesoporous silica material was applied to test the removal efficiency of gas-phase Hg0 using a fixed-bed reactor. The physical and chemical properties of nano-ceramic were investigated by various techniques such as BET surface area (BET), X-ray diffraction, fourier transform infrared spectrometer (FTIR), and scanning electron microscope (SEM); then, the sample was tested for mercury adsorption under different conditions. The mercury adsorption tests shown that different Hg0 concentration, adsorption temperature, gas flow rate, and different gas components have significant effects on the mercury removal performance of nano-ceramic, and the adsorption removal rate of nano-ceramic can be 75.58% under the optimal experimental conditions. After fitting the experimental data to the adsorption model, it was found that the theoretical maximum mercury adsorption amount q max of nano-ceramic is 1.61 mg g−1 and there were physical and chemical adsorption at the same time. The adsorption kinetics fitting results shown that the adsorption process of nano-ceramic exhibits multi-segment characteristics of “transmembrane–diffusion–adsorption.”

2015 ◽  
Vol 656-657 ◽  
pp. 23-27
Author(s):  
Han Wen Cheng ◽  
Ching Tsung Yu

The novel carbonate sorbents of Mg–Al–CO3 and (Mg3−x, Cux)–Al–CO3, were synthesized by co-precipitation method with individual nitrate salt of metal ions under alkaline conditions. The synthetic sorbent was characterized by analysis techniques such as BET surface area analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Elemental mercury capture experiments were carried out in a fixed-bed reactor including Hg permeation source, furnace, and Hg analyzer, which was conducted at temperature ranging from 30 to 300 o C. The major results showed that the surface area of material was significantly increased via incorporating Cu2+ into Mg–Al–CO3, accordingly enhancing Hg retention capacity of sorbents. SEM imagines displayed the layer appearance of Mg/Al and Mg/Cu/Al sorbents. Crystalline analysis indicated lamella structure accompanied with metal oxides within materials. Mercury removal tests demonstrated that the breakthrough time increased with temperature by adding transition metals to Mg–Al–CO3 as (Mg3−x, Cux)–Al–CO3. Hg uptake by the (Mg3−x, Cux)–Al–CO3 sorbent rapidly increased with elevated temperature up to 200 o C and reached the maximum capacity of 12.93 μg/g, and then gradually decreased after 300 o C. Surface area and unique properties of transition metals are the reason toward improving Hg capture sorbent. These results represent the feasibility of using such Hg sorbents for elemental mercury removal under elevated temperature conditions, and the detail mechanism is needed to be further studied.


1999 ◽  
Vol 39 (4) ◽  
pp. 85-92 ◽  
Author(s):  
J. Behrendt

A mathematical model for nitrification in an aerated fixed bed reactor has been developed. This model is based on material balances in the bulk liquid, gas phase and in the biofilm area. The fixed bed is divided into a number of cells according to the reduced remixing behaviour. A fixed bed cell consists of 4 compartments: the support, the gas phase, the bulk liquid phase and the stagnant volume containing the biofilm. In the stagnant volume the biological transmutation of the ammonia is located. The transport phenomena are modelled with mass transfer formulations so that the balances could be formulated as an initial value problem. The results of the simulation and experiments are compared.


2021 ◽  
Vol 11 (2) ◽  
pp. 682
Author(s):  
Gabriele Seitz ◽  
Farid Mohammadi ◽  
Holger Class

Calcium oxide/Calcium hydroxide can be utilized as a reaction system for thermochemical heat storage. It features a high storage capacity, is cheap, and does not involve major environmental concerns. Operationally, different fixed-bed reactor concepts can be distinguished; direct reactor are characterized by gas flow through the reactive bulk material, while in indirect reactors, the heat-carrying gas flow is separated from the bulk material. This study puts a focus on the indirectly operated fixed-bed reactor setup. The fluxes of the reaction fluid and the heat-carrying flow are decoupled in order to overcome limitations due to heat conduction in the reactive bulk material. The fixed bed represents a porous medium where Darcy-type flow conditions can be assumed. Here, a numerical model for such a reactor concept is presented, which has been implemented in the software DuMux. An attempt to calibrate and validate it with experimental results from the literature is discussed in detail. This allows for the identification of a deficient insulation of the experimental setup. Accordingly, heat-loss mechanisms are included in the model. However, it can be shown that heat losses alone are not sufficient to explain the experimental results. It is evident that another effect plays a role here. Using Bayesian inference, this effect is identified as the reaction rate decreasing with progressing conversion of reactive material. The calibrated model reveals that more heat is lost over the reactor surface than transported in the heat transfer channel, which causes a considerable speed-up of the discharge reaction. An observed deceleration of the reaction rate at progressed conversion is attributed to the presence of agglomerates of the bulk material in the fixed bed. This retardation is represented phenomenologically by mofifying the reaction kinetics. After the calibration, the model is validated with a second set of experimental results. To speed up the calculations for the calibration, the numerical model is replaced by a surrogate model based on Polynomial Chaos Expansion and Principal Component Analysis.


1991 ◽  
Vol 23 (7-9) ◽  
pp. 1319-1326 ◽  
Author(s):  
I. E. Gönenç ◽  
D. Orhon ◽  
B. Beler Baykal

Two basic phenomena, reactor hydraulics and mass transport through biofilm coupled with kinetic expressions for substrate transformations were accounted for in order to describe the soluble COD removal mechanism in anaerobic fixed bed reactors. To provide necessary verification, experimental results from the long term operation of the pilot scale anaerobic reactor treating molasses wastewater were used. Theoretical evaluations verified by these experimental studies showed that a bulk zero-order removal rate expression modified by diffusional resistance leading to bulk half-order and first-order rates together with the particular hydraulic conditions could adequately define the overall soluble COD removal mechanism in an anaerobic fixed bed reactor. The experimental results were also used to determine the kinetic constants for practical application. In view of the complexity of the phenomena involved it is found remarkable that a simple simulation model based on biofilm kinetics is a powerful tool for design and operation of anaerobic fixed bed reactors.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Xiaoxiao Meng ◽  
Wei Zhou ◽  
Emad Rokni ◽  
Honghua Zhao ◽  
Rui Sun ◽  
...  

This research investigated the effects of the specific primary (under-fire) air flowrate (m˙air) on the combustion behavior of a 50–50 wt % blend of raw corn straw (CS) and raw pinewood wastes in a fixed-bed reactor. This parameter was varied in the range of 0.079–0.226 kg m−2 s−1, which changed the overall combustion stoichiometry from air-lean (excess air coefficient λ = 0.73) to air-rich (excess air coefficient λ = 1.25) and affected the combustion efficiency and stability as well as the emissions of hazardous pollutants. It was observed that by increasing m˙air, the ignition delay time first increased and then decreased, the average bed temperatures increased, both the average flame propagation rates and the fuel burning rates increased, and the combustion efficiencies also increased. The emissions of CO as well as those of cumulative gas phase nitrogen compounds increased, the latter mostly because of increasing HCN, while those of NO were rather constant. The emissions of HCl decreased but those of other chlorine-containing species increased. The effect of m˙air on the conversion of sulfur to SO2 was minor. By considering all of the aforesaid factors, a mildly overall air-rich (fuel-lean) (λ = 1.04) operating condition can be suggested for corn-straw/pinewood burning fixed-bed grate-fired reactors.


Author(s):  
Fahim Fayaz ◽  
Ahmad Ziad Sulaiman ◽  
Sharanjit Singh ◽  
Sweeta Akbari

The effect of CO2 partial pressure on ethanol dry reforming was evaluated over 5%Ce-10%Co/Al2O3 catalyst at = PCO2 = 20-50 kPa, PC2H5OH = 20 kPa, reaction temperature of 973 K under atmospheric pressure. The catalyst was prepared by using impregnation method and tested in a fixed-bed reactor. X-ray diffraction measurements studied the formation of Co3O4, spinel CoAl2O4 and CeO2, phases on surface of 5%Ce-10%Co/Al2O3 catalyst. CeO2, CoO and Co3O4 oxides were obtained during temperature–programmed calcination. Ce-promoted 10%Co/Al2O3 catalyst possessed high BET surface area of 137.35 m2 g-1. C2H5OH and CO2 conversions was improved with increasing CO2 partial pressure from 20-50 kPa whilst the optimal selectivity of H2 and CO was achieved at 50 kPa.


2021 ◽  
Vol 1 (1-2) ◽  
pp. 15
Author(s):  
Elham Yaghoobpour ◽  
Yahya Zamani ◽  
Saeed Zarrinpashne ◽  
Akbar Zamaniyan

Promoters and their loading amount have crucial roles in cobalt Fischer – Tropsch catalysts. In this regard, the effects of vanadium oxide (V2O5) as a proposed promoter for Co catalyst supported on TiO2 have been investigated. Three catalysts with 0, 1, and 3 wt.% of V2O5 promoter loading are prepared by the incipient wetness impregnation method, and characterized by the BET surface area analyzer, XRD, H2-TPR, and TEM techniques. The fixed-bed reactor was employed for their evaluations. It was found that the catalyst containing 1 wt.% V2O5 has the best performance among the evaluated catalysts, demonstrating remarkable selectivity: 92 % C5+ and 5.7 % CH4, together with preserving the amount of CO conversion compared to the unpromoted catalyst. Furthermore, it is reported that the excess addition of V2O5 promoter (> 1 wt.%) in the introduced catalyst leads to the detrimental effect on the CO conversion and C5+ selectivity, mainly owing to diminished active sites by V2O5 loading.


2020 ◽  
Vol 400 ◽  
pp. 159-169
Author(s):  
Sara F.H. Tasfy ◽  
Noor Asmawati Mohd Zabidi ◽  
Maizatul Shima Shaharun ◽  
Duvvria Subbarao

Bimetallic Cu-ZnO-based catalyst were systematically prepared via impregnation technique under controlled synthesis conditions of active metal loading, ratio of active metal Cu:Zn and synthesis pH. The effect of the synthesis condition on the performance of the Cu-ZnO supported catalysts with respect to the hydrogenation of CO2 to methanol in micro-activity fixed-bed reactor at 250°C, 2.25 MPa, and 75% H2/25%CO2 ratio. The synthesized catalysts were characterized by transmission electron microscopy (TEM) and temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO) and the surface area determination was also performed. The results demonstrate that the catalytic structure, activity, and methanol selectivity was strongly affected by the synthesis parameters. Increasing of synthesis pH from 1 to 7 shows better metal particles distribution, Cu desperation of 29%, higher BET surface area as well as Cu surface area, while further increasing on pH revealed on particles agglomeration and weak metal-support interaction. In addition, increasing of the active metal loading from 5 to 15 % resulted in dramatic increase in the conversion of CO2 and methanol production while further increase caused lower catalytic performance. Moreover, catalyst with total loading of 15%, Cu:Zn ratio of 70:30 synthesized at pH of 7 exhibit higher catalytic activity of 14%, methanol selectivity of 92%, and TOF of 1.24×103 s-1 compared with other catalyst prepared under various conditions


1996 ◽  
Vol 34 (7-8) ◽  
pp. 437-444 ◽  
Author(s):  
J. Dollerer ◽  
P. A. Wilderer

Bench-scale experiments with two different types of fixed bed reactor have been conducted in order to investigate the potential of SBBr technology (Sequencing Batch Biofilm Reactor) for treatment of leachates from different hazardous waste landfills. Reactor A was equipped with a membrane oxygenatition system for bubble free transfer of oxygen into the bulk liquid. In constract, reactor B was bubble aerated. The process was found to be remarkably stable. An average DOC removal rate of 68% was achieved with a 12-hour cycle. The emission of biodegradable volatile organic substances was observed to be significantly reduced by using bubble free aeration system.


2017 ◽  
Vol 14 (1) ◽  
pp. 55-59 ◽  
Author(s):  
Ali Bahadir ◽  
Turgay Kar ◽  
Sedat Keles ◽  
Kamil Kaygusuz

Purpose The purpose of this paper is to investigate fast pyrolysis of maple fruit as an energy sources. This could serve as a solution to the energy sources problem. Design/methodology/approach Fast pyrolysis of maple fruit (samara) was achieved in a fixed bed reactor. The pyrolysis experiments have been conducted on the sample of maple seeds to particularly determine the effects of pyrolysis temperature, particle size and sweep gas flow rate on the pyrolysis product yields. Findings The oil of maple fruit from fast pyrolysis has good properties to be a potential candidate as a biofuel or as a source of chemicals. In addition to being environmentally desirable, it can reduce the energy cost, e.g. that Turkey imports a majority of its energy. Originality/value The use of maple fruit for fast pyrolysis and pyrolysis conditions impact on the yields of pyrolysis liquid can be considered as novel aspects of this paper.


Sign in / Sign up

Export Citation Format

Share Document