scholarly journals Chemical Composition and Antibacterial Activity of Essential Oils from Myrcia alagoensis (Myrtaceae)

2013 ◽  
Vol 8 (2) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Aline do N. Silva ◽  
Ana Paula T. Uetanabaro ◽  
Angélica M. Lucchese

The chemical composition and antibacterial activity of essential oils obtained from fresh and dried leaves of Myrcia alagoensis O. Berg, collected in a secondary forest remnant in north-eastern Brazil, was compared. The essential oils were obtained by hydrodistillation from fresh and dried leaves, and analysed by GC/FID and GC/MS. The antimicrobial properties of the oils were investigated against five bacteria by determination of the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). The essential oils were rich in cyclic sesquiterpenes, such as germacrene B, with antibiotic action against Gram-positive and Gram-negative bacteria. The drying process after collection interfered with the chemical composition and antibacterial activity of the assessed samples.

2006 ◽  
Vol 22 (1) ◽  
pp. 24-26 ◽  
Author(s):  
Roberto Lima de Albuquerque ◽  
Maria Goretti de Vasconcelos Silva ◽  
Maria Iracema L. Machado ◽  
Francisco José de A. Matos ◽  
Selene Maia de Morais ◽  
...  

2017 ◽  
Vol 20 (sup3) ◽  
pp. S2660-S2667 ◽  
Author(s):  
Saddam Hussain Bughio ◽  
Muhammad Qasim Samejo ◽  
Shahabuddin Memon ◽  
Shaista Bano ◽  
Moina Akhtar Mughal ◽  
...  

2018 ◽  
Vol 16 (S1) ◽  
pp. S155-S163 ◽  
Author(s):  
S. Mehalaine ◽  
O. Belfadel ◽  
T. Menasria ◽  
A. Messaili

The present study was carried out to determine, for the first time, the chemical composition and antibacterial activity of essential oils derived from the aerial parts of three aromatic plants Thymus algeriensis Boiss & Reut, Rosmarinus officinalis L., and Salvia officinalis L. growing under semiarid conditions. The essential oils were chemically analyzed and identified by gas chromatography (GC) and GC/ mass spectrometry (GC/MS) and their antimicrobial activity was individually evaluated against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa using both agar disk diffusion and agar dilution methods. The major constituents of Thymus algeriensis essential oil were identified as camphor (13.62%), 1,8-cineol (6.00%), borneol (5.74%), viridiflorol (4.00%), and linalool (3.93%). For Rosmarinus officinalis essential oil, 48 compounds were characterized, of which the main constituents were camphor (17.09%), Z-β-ocimene (10.88%), isoborneol (9.68%), α-bisabolol (7.89%), and borneol (5.11%). While, Salvia officinalis essential oil was characterized by β-thujone (16.44%), followed by viridiflorol (10.93%), camphor (8.99%), 1,8-cineol (8.11%), trans-caryophyllene (5.85%), and α-humulene (4.69%) as the major components. Notably, results from antibacterial screening indicated that Thymus algeriensis and Salvia officinalis essential oils exhibited a strong inhibitory effect against both Escherichia coli and Staphylococcus aureus compared to Rosmarinus officinalis essential oil. Further, less activity was recorded against Pseudomonas aeruginosa for the three tested essential oils.


2020 ◽  
Vol 26 (5) ◽  
pp. 519-541 ◽  
Author(s):  
Giovanna Ferrentino ◽  
Ksenia Morozova ◽  
Christine Horn ◽  
Matteo Scampicchio

Background: The use of essential oils is receiving increasing attention worldwide, as these oils are good sources of several bioactive compounds. Nowadays essential oils are preferred over synthetic preservatives thanks to their antioxidant and antimicrobial properties. Several studies highlight the beneficial effect of essential oils extracted from medicinal plants to cure human diseases such as hypertension, diabetes, or obesity. However, to preserve their bioactivity, the use of appropriate extraction technologies is required. Method: The present review aims to describe the studies published so far on the essential oils focusing on their sources and chemical composition, the technologies used for their recovery and their application as antioxidants in food products. Results: The review has been structured in three parts. In the first part, the main compounds present in essential oils extracted from medicinal plants have been listed and described. In the second part, the most important technologies used for extraction and distillation, have been presented. In detail, conventional methods have been described and compared with innovative and green technologies. Finally, in the last part, the studies related to the application of essential oils as antioxidants in food products have been reviewed and the main findings discussed in detail. Conclusions: In summary, an overview of the aforementioned subjects is presented by discussing the results of the most recent published studies.


2020 ◽  
Vol 10 (3) ◽  
pp. 272-278
Author(s):  
Ardalan Pasdaran ◽  
Satyajit D. Sarker ◽  
Lutfun Nahar ◽  
Azadeh Hamedi

Background: The essential oil from the Acantholimon genus have been an integral part of the traditional food additive in Middle East. Most of the plants in Acantholimon genus have not been studied scientifically. The aim of this study is to investigate the chemical composition, antibacterial, insecticidal and anti-oxidant activities of three Acantholimon species including Acantholimon atropatanum, A. gilliatii and A. tragacanthium. Method: The essential oils of the aerial parts were extracted by hydrodistillation. Chemical constitutions were identified by gas chromatography- mass spectroscopy technique, also their toxicities were assessed against the two important grain products pests, Oryzeaphilus mercator and Tribolium castaneum. Antibacterial activity was assessed against the three foodborne bacteria that include Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus based on the disc diffusion assay. Free-radical-scavenging property was identified based on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. Results: 2-hexahydrofarnesyl acetone was the main compound in A. gilliatii and A. tragacanthium, whilst farnesyl acetone, heptacosane and germacrene D were the principal components of A. atropatanum essential oil. These oils exhibited 40-90% mortality of O. mercator and/or T. castaneum at a dose of 12 μl/l air after 48h of exposure, and exhibited significant free-radicalscavenging property (RC50 = 3.7 × 10-3 - 8.3 × 10-3 mg/ml). The oils of A. tragacanthium and A. gilliatii showed a weaker antibacterial activity compared to A. atropatanum. Conclusion: A. atropatanum, A. gilliatii and A. tragacanthium essential oils had significant insecticidal and anti-oxidant properties. They also showed week to moderate antibacterial activity against P. aeruginosa and S. aureus.


2015 ◽  
Vol 9 (2) ◽  
pp. 9-13 ◽  
Author(s):  
Amir Hossein Saeidnejad ◽  
Peyman Rajaei

Essential oils constitute a heterogeneous collection of chemical compounds. Their main characteristics are that they all synthesized by plants and are volatile and mostly soluble in ethanol. They have traditionally been obtained from plants and they have been widely used for insecticidal, medicinal and cosmetic purposes. Essential oils contains about 20–60 components at quite different concentrations and they are characterized by two or three major components at fairly high concentrations. Lately, the essential oils and various extracts of plants have gained special interest as sources of natural antimicrobial and antioxidant agents because of the resistance to antibiotics that some microorganisms have acquired and the possible toxicities of the synthetic antioxidants. Spices consumed daily in different types of food to improve flavors, since ancient times, are well known for their antioxidant and antimicrobial properties. During recent decades, numerous numbers of plants have been monitored for their possible role as repellents and insecticides. In this review, the chemical composition profile of some important medicinal plants was evaluated, then antimicrobial properties of a number of essential oils was compared. Antioxidant activity of some essential oils was also considered. Finally, essential oil repellent properties an an important characteristics was evaluated. Further investigation for available data related to the other biological properties of medicinal plants essential oil is recommended.DOI: http://dx.doi.org/10.3126/ijls.v9i2.12043 International Journal of Life Sciences 9 (2) : 2015; 9-13


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 980 ◽  
Author(s):  
Dorra Dridi ◽  
Aicha Bouaziz ◽  
Sondes Gargoubi ◽  
Abir Zouari ◽  
Fatma B’chir ◽  
...  

We report an analysis of chemical components of essential oils from barks of Ceylon cinnamon and cloves of Syzygium aromaticum and an investigation of their antibacterial activity. The components of oils were determined by using Gas Chromatography/Mass Spectrometry (GC-MS) analysis, and the antimicrobial activity was assessed by the disk diffusion test. The synergic effect of essential oils mixture (cinnamon oil and clove oil) was evaluated. Antimicrobial properties were conferred to cellulosic fibers through microencapsulation using citric acid as a green binding agent. Essential oil mixture was encapsulated by coacervation using chitosan as a wall material and sodium hydroxide as a hardening agent. The diameter of the produced microcapsules varies between 12 and 48 μm. Attachment of the produced microcapsules onto cotton fabrics surface was confirmed by Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy, optical microscopy and Scanning Electron Microscopy (SEM) analysis. The results show that microcapsules were successfully attached on cotton fabric surfaces, imparting antibacterial activity without significantly affecting their properties. The finished cotton fabrics exhibited good mechanical properties and wettability.


2020 ◽  
Vol 71 (6) ◽  
pp. 267-273 ◽  
Author(s):  
Branislava D. Kocic ◽  
Dobrila M. Stankovic Dordevic ◽  
Marija V. Dimitrijevic ◽  
Marija S. Markovic ◽  
Dragoljub L. Miladinovic

The susceptibility of Helicobacter pylori to three essential oils (EOs), 12 naturally occurring monoterpene hydrocarbons, oxygenated and phenolic monoterpenes and three reference antibiotics were studied. Classification and comparison of essential oils and monoterpenes on the basis of their chemical composition and antibacterial activity were made by the utilization of principal component analyses (PCA) and agglomerative hierarchical clustering (AHC). The most abundant compound in the Thymus glabrescens Willd. and Thymus pulegioides L. EOs is geraniol (33.8% and 52.5%), while the main constituent in Satureja kitaibelii Wierzb. ex Heuff. EO is limonene (16,1%). The compound that was the most active against H. pylori was carvacrol. EOs of T. glabrescens and S. kitaibelii exhibit higher antibacterial ability in comparison with all monoterpenes, except carvacrol, probably based on the concept of synergistic activity of essential oil components. PCA separated essential oils based on chemical composition and explain 96.5% of the total variance in the first two principal components. Essential oils, phenolic monoterpenes and two antibiotics were classified in the same sub-cluster within AHC analyses. EOs of T. glabrescens and S. kitaibelii can be used to treat infections caused by H. pylori, as a potentially effective, cheap and safe natural products. Further research of antibacterial activity of selected monoterpenes, essential oils and standard antibiotic combinations, as well as clinical study are required.


Sign in / Sign up

Export Citation Format

Share Document