scholarly journals The Effect of Zuccagnia punctata, an Argentine Medicinal Plant, on Virulence Factors from Candida Species

2014 ◽  
Vol 9 (7) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Nuño Gabriela ◽  
Alberto María Rosa ◽  
Zampini Iris Catiana ◽  
Cuello Soledad ◽  
Ordoñez Roxana Mabel ◽  
...  

Zuccagnia punctata Cav. has been used as a traditional medicine in Argentina for the treatment of bacterial and fungal infections. In this study, we evaluated the ability of Z. punctata extract (ZpE) and compounds isolated from it to inhibit the growth and virulence factors of Candida species. ZpE showed inhibitory activity against planktonic cells of all assayed Candida species with MIC values of 400 μg/mL and with MFC values between 400 and 1,200 μg/mL. The principal identified compounds by HPLC-MS/MS and UV-VIS were chalcones (2′,4′-dihydroxy-3′-methoxychalcone, 2′,4′- dihydroxychalcone), flavones (galangin, 3,7-dihydroxyflavone and chrysin) and flavanones (naringenin, 7-hydroxyflavanone and pinocembrine). These compounds were more effective as inhibitors than the extracts upon biofilm formation as well as on preformed Candida biofilm and yeast germ tube formation. Furthermore, ZpE and chalcones are able to inhibit exoenzymes, which are responsible for the invasion mechanisms of the pathogens. All these effects could moderate colonization, thereby suppressing the pathogen invasive potential. Our results indicate that ZpE and chalcones could be used in antifungal therapy.

2019 ◽  
Vol 58 (6) ◽  
pp. 797-809
Author(s):  
Lucía Giacone ◽  
Estefanía Cordisco ◽  
María Clara Garrido ◽  
Elisa Petenatti ◽  
Maximiliano Sortino

Abstract Candida and dermatophyte species are the most common causes of superficial mycoses because their treatment can be difficult due to limitations of current antifungal drugs in terms of toxicity, bioavailability, interactions, narrow-spectrum activity, and development of resistance. Photodynamic therapy (PDT) involves the topical administration of a photosensitizer in combination with light of an appropriate wavelength and molecular oxygen that produces reactive oxygen species (ROS), which promote damage to several vital components of the microorganism. Tagetes species are known as a source of thiophenes, biologically active compounds whose antifungal activity is enhanced by irradiation with UVA. The present investigation evaluated Tagetes minuta extracts as a photosensitizer on growth of Candida and dermatophytes and their effect on Candida virulence factors. T. minuta root hexane and dichloromethane extracts demonstrated high photodynamic antifungal activity. Bioautographic assays and chromatographic analysis revealed the presence of five thiophenes with reported photodynamic antifungal activities under UVA. Analysis of ROS production indicated that both type I and II reactions were involved in the activity of the extracts. In addition, the extracts inhibited virulence factors of Candida, such as adherence to epithelial surfaces and germ tube formation and showed efficacy against different Candida morphologies: budding cells, cells with germ tube and biofilms. Results suggested that PDT with T. minuta extracts might become a valuable alternative to the already established antifungal drugs for the treatment of superficial fungal infections.


Author(s):  
Fatima Abdul Hussein Mejbel

 During the period from September 2016 to December 2017,135 urine samples were collected from urinary tract infection patients attending to AL-Zahraa Hospital in AL-Najaf Governorate. The present study was conducted to isolate and identify Candida spp. isolated from urinary tract infection patients by different methods including direct examination, laboratory culture, biochemical test and by modern techniques (Api Candida kit) and determine the virulence factors phenotypic to Candida spp which involved (biofilm formation,phospholipase and germ tube). The percentage of females to males was as following, female (84) 62.2 % (21) infected and male (51) 37.8% (1) infected with all age categories. The results in this study are explain that is some Candida spp. such as C. albicans, have high susceptible to eugenole follow by phenol and umbellulone. The efficiency of some chemical substances such as (eugenole,umbellulone, and phenol) was evaluated to inhibit the growth of Candida ssp as well as some virulence factors such as biofilm formation,germ tube and phospholipase,which were studied in this research. Statistically analysis results have been significance difference between the results of the substance concentrations and the concentrations of the different other substances.


2021 ◽  
Vol 22 (7) ◽  
pp. 3666
Author(s):  
Bettina Szerencsés ◽  
Attila Gácser ◽  
Gabriella Endre ◽  
Ildikó Domonkos ◽  
Hilda Tiricz ◽  
...  

The increasing rate of fungal infections causes global problems not only in human healthcare but agriculture as well. To combat fungal pathogens limited numbers of antifungal agents are available therefore alternative drugs are needed. Antimicrobial peptides are potent candidates because of their broad activity spectrum and their diverse mode of actions. The model legume Medicago truncatula produces >700 nodule specific cysteine-rich (NCR) peptides in symbiosis and many of them have in vitro antimicrobial activities without considerable toxicity on human cells. In this work we demonstrate the anticandidal activity of the NCR335 and NCR169 peptide derivatives against five Candida species by using the micro-dilution method, measuring inhibition of biofilm formation with the XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay, and assessing the morphological change of dimorphic Candida species by microscopy. We show that both the N- and C-terminal regions of NCR335 possess anticandidal activity as well as the C-terminal sequence of NCR169. The active peptides inhibit biofilm formation and the yeast-hypha transformation. Combined treatment of C. auris with peptides and fluconazole revealed synergistic interactions and reduced 2-8-fold the minimal inhibitory concentrations. Our results demonstrate that shortening NCR peptides can even enhance and broaden their anticandidal activity and therapeutic potential.


2012 ◽  
Vol 81 ◽  
pp. 95-102 ◽  
Author(s):  
S. Taweechaisupapong ◽  
J. Aieamsaard ◽  
P. Chitropas ◽  
W. Khunkitti

2008 ◽  
Vol 37 (10) ◽  
pp. 587-592 ◽  
Author(s):  
Eugénia Pinto ◽  
Isabel Cristina Ribeiro ◽  
Núria Joana Ferreira ◽  
Cátia Eliana Fortes ◽  
Patrícia Alexandra Fonseca ◽  
...  

mSphere ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Ryan Kean ◽  
Christopher Delaney ◽  
Leighann Sherry ◽  
Andrew Borman ◽  
Elizabeth M. Johnson ◽  
...  

ABSTRACT Candida auris has emerged as a significant global nosocomial pathogen. This is primarily due to its antifungal resistance profile but also its capacity to form adherent biofilm communities on a range of clinically important substrates. While we have a comprehensive understanding of how other Candida species resist and respond to antifungal challenge within the sessile phenotype, our current understanding of C. auris biofilm-mediated resistance is lacking. In this study, we are the first to perform transcriptomic analysis of temporally developing C. auris biofilms, which were shown to exhibit phase- and antifungal class-dependent resistance profiles. A de novo transcriptome assembly was performed, where sequenced sample reads were assembled into an ~11.5-Mb transcriptome consisting of 5,848 genes. Differential expression (DE) analysis demonstrated that 791 and 464 genes were upregulated in biofilm formation and planktonic cells, respectively, with a minimum 2-fold change. Adhesin-related glycosylphosphatidylinositol (GPI)-anchored cell wall genes were upregulated at all time points of biofilm formation. As the biofilm developed into intermediate and mature stages, a number of genes encoding efflux pumps were upregulated, including ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporters. When we assessed efflux pump activity biochemically, biofilm efflux was greater than that of planktonic cells at 12 and 24 h. When these were inhibited, fluconazole sensitivity was enhanced 4- to 16-fold. This study demonstrates the importance of efflux-mediated resistance within complex C. auris communities and may explain the resistance of C. auris to a range of antimicrobial agents within the hospital environment. IMPORTANCE Fungal infections represent an important cause of human morbidity and mortality, particularly if the fungi adhere to and grow on both biological and inanimate surfaces as communities of cells (biofilms). Recently, a previously unrecognized yeast, Candida auris, has emerged globally that has led to widespread concern due to the difficulty in treating it with existing antifungal agents. Alarmingly, it is also able to grow as a biofilm that is highly resistant to antifungal agents, yet we are unclear about how it does this. Here, we used a molecular approach to investigate the genes that are important in causing the cells to be resistant within the biofilm. The work provides significant insights into the importance of efflux pumps, which actively pump out toxic antifungal drugs and therefore enhance fungal survival within a variety of harsh environments.


2011 ◽  
Vol 56 (2) ◽  
pp. 960-971 ◽  
Author(s):  
Nao-aki Watanabe ◽  
Mamiko Miyazaki ◽  
Takaaki Horii ◽  
Koji Sagane ◽  
Kappei Tsukahara ◽  
...  

ABSTRACTContinued research toward the development of new antifungals that act via inhibition of glycosylphosphatidylinositol (GPI) biosynthesis led to the design of E1210. In this study, we assessed the selectivity of the inhibitory activity of E1210 againstCandida albicansGWT1(Orf19.6884) protein,Aspergillus fumigatusGWT1(AFUA_1G14870) protein, and humanPIG-Wprotein, which can catalyze the inositol acylation of GPI early in the GPI biosynthesis pathway, and then we assessed the effects of E1210 on keyC. albicansvirulence factors. E1210 inhibited the inositol acylation activity ofC. albicansGwt1p andA. fumigatusGwt1p with 50% inhibitory concentrations (IC50s) of 0.3 to 0.6 μM but had no inhibitory activity against human Pig-Wp even at concentrations as high as 100 μM. To confirm the inhibition of fungal GPI biosynthesis, expression ofALS1protein, a GPI-anchored protein, on the surfaces ofC. albicanscells treated with E1210 was studied and shown to be significantly lower than that on untreated cells. However, theALS1protein levels in the crude extract and theRHO1protein levels on the cell surface were found to be almost the same. Furthermore, E1210 inhibited germ tube formation, adherence to polystyrene surfaces, and biofilm formation ofC. albicansat concentrations above its MIC. These results suggested that E1210 selectively inhibited inositol acylation of fungus-specific GPI which would be catalyzed by Gwt1p, leading to the inhibition of GPI-anchored protein maturation, and also that E1210 suppressed the expression of some important virulence factors ofC. albicans, through its GPI biosynthesis inhibition.


2019 ◽  
Author(s):  
Lian-hua Wei ◽  
Tian Yu ◽  
Xiao-ning Wang ◽  
Jin-xia Hou ◽  
Xin Wang ◽  
...  

AbstractObjectiveThis study aimed to examine the antifungal activity of ε-poly-L-lysine (ε-PL) against the planktonic cells or biofilms ofCandida albicansand explore the underlying mechanism.MethodsThe minimal inhibitory concentration, minimum fungal concentration, and sessile minimal inhibitory concentration were estimated. The germ tube formation and yeast-to-hypha transformation ofC. albicansin different media that induced mycelial growth were recorded. The effect of different concentrations of ε-PL on the biofilm formation process and mature biofilm ofC. albicanswas determined. The reactive oxygen species (ROS) and malondialdehyde (MDA) contents ofC. albicansafter ε-PL treatment were measured. The changes in major virulence genes and proteins ofC. albicanswere detected.Resultsε-PL (512 μg/mL) exerted a strong inhibitory effect onC. albicansand biofilms. It blocked the yeast-to-hypha transition and reduced the germ tube formation and germ tube length ofC. albicans. The MDA and ROS contents showed an upward trend, indicating a positive correlation with the concentration. Further, ε-PL inhibited the high expression of virulence genes in oxidative stress induced byC. albicans. The main peak in the mass spectrum ofC. albicanswas found to be clear.Conclusionsε-PL exerted a significant antifungal effect on the phytoplankton and biofilm ofC. albicans. High concentrations of ε-PL significantly inhibited the main mycelium ofC. albicans. ε-PL induced ROS, released cytochrome C, attacked theC. albicanscell membrane to aggravate its lipid oxidation, and inhibited the expression ofC. albicans–associated virulence genes and proteins, thereby exerting a bacteriostatic effect.ImportanceThe last two decades have seen a growing trend toward the failure of current antifungal drugs attributed toCandidabiofilms. Under appropriate conditions, adherence and colonization of planktonic cells on host tissues and medical devices initiate multicellular organization called biofilm, which is an organized heterogeneous mixture of yeast, hyphae, and pseudohyphal forms embedded in a complex extracellular matrix. Compared with the planktonic cells, biofilms show high resistance to a wide variety of antifungal agents and tolerance to harsh environments and host immune system. Moreover, the development of antifungal drugs is costly, long-term, and difficult. Thus, researchers turned their attention to natural antibacterial peptides, hoping to find an effective antifungal substance or enhance the sensitivity of the existing antifungal drugs toC. albicans.


2021 ◽  
Vol 22 (22) ◽  
pp. 12523
Author(s):  
Daseul Kim ◽  
Ki-Young Kim

(1) Background: Candida is the most common cause of fungal infections worldwide, but due to the limited option of antifungal therapies, alternative strategies are required. (2) Methods: Adenophora triphylla var. japonica extract was used for the biofilm formation assay using RPMI1640. The combinatorial antifungal assay, the dimorphic transition assay, and the adherence assay were done to see the influence of inhibition of biofilm formation. qRT-PCR analysis were performed to check the gene expression. (3) Results: Adenophora triphylla var. japonica extract inhibited the Candida biofilm formation. Treatment of extract increased the antifungal susceptibility of miconazole from a 37% reduction in fungal growth to 99.05%, and also dose-dependently reduced the dimorphic transition of Candida and the attachment of Candida to HaCaT cells. The extract blocked the expression of hyphal-related genes, extracellular matrix genes, Ras1-cAMP-PKA pathway genes, Cph2-Tec1 pathway gene, and MAP kinase pathway gene. (4) Conclusions: In this study, the treatment of Adenophora triphylla var. japonica extract showed inhibition of fungal biofilm formation, activation of antifungal susceptibility, and reduction of infection. These results suggest that fungal biofilm formation is a good target for the development of antifungal adjuvants, and Adenophora triphylla var. japonica extract should be a good candidate for biofilm-associated fungal infections.


Author(s):  
Raja Vinodhini ◽  
Kannaiyan Moorthy ◽  
Mickymaray Suresh

            Objective: Fungal infections are caused by Candida species are increasing mainly in immunocompromised patients. Among Candida species, Candida dubliniensis has recently increasing opportunistic pathogenic yeast. The present study was aimed to assess the incidence and virulence factors of C. dubliniensis isolated from urine samples of various hospitalized clinically suspected patients. Methods: Totally 1,406 urine samples were processed, among that 9(0.64%) were identified as C. dubliniensis by germ tube production, biochemical test (Candida identification kit), CHROM agar Candida differential medium and growth at 45°C. Virulence factors of the C. dubliniensis viz., phospholipase, proteinase, esterase, lipase, haemolysin and biofilm production were detected by standard procedures. Results: Maximum number of C.dubliniensis have ability to produce protienase 6(66.66%), followed by esterase 5(55.55%), biofilm formation 4(44.44%), haemolysin 2(22.22%) and phospholipase, lipase 1(11.1%) respectively. Conclusion: The result revealed that these enzymes are potential virulence factors are the most important thing to realize pathogenesis of C. dubliniensis. 


Sign in / Sign up

Export Citation Format

Share Document