scholarly journals Phenolic Content, Antioxidant and Astroprotective Response to Oxidative Stress of Ethanolic Extracts of Mentha longifolia from Sinai

2014 ◽  
Vol 9 (10) ◽  
pp. 1934578X1400901 ◽  
Author(s):  
Tarek F. Eissa ◽  
Elena González-Burgos ◽  
M. Emilia Carretero ◽  
M. Pilar Gómez-Serranillos

The aerial parts of Mentha longifolia L. are used as herbal remedies for curing different diseases through traditional Bedouin medicine. The antioxidant activity of the ethanolic extracts of M. longifolia was investigated measuring peroxyl radical-scavenging activity by ORAC assay, with Trolox (a water-soluble analogue of α-tocopherol) employed as reference compound. In addition, the total content of phenolic compounds estimated by the Folin-Ciocalteau method and the identification of the polyphenols using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) have been performed. Furthermore, the effect of these extracts on cell viability and intracellular ROS production was assayed using the U373-MG human astrocytoma cell line in a H2O2-induced oxidative stress model. Results showed that the major type of polyphenols found were benzoic acids, cinnamic acids, flavones and flavanones. The total phenolic content was 37.7 mg gallic acid/g sample and the ORAC value was 1.355 μmol TE/mg sample. The data obtained in cellular assays demonstrated that these ethanolic extracts protected H2O2-induced astrocyte damage by increasing cell viability and inhibiting production of intracellular ROS. These results suggest that the investigated extracts obtained from the aerial parts of M. longifolia have antioxidant potential related to their phenol content which have important beneficial health effects, especially in those disease associated with ROS.

2020 ◽  
Vol 10 ◽  
Author(s):  
Dhrubajyoti Sarkar ◽  
Sekhar Kumar Bose ◽  
Tania Chakraborty ◽  
Souvik Roy

Background: Diabetic nephropathy (DN), a microvascular complication of diabetes has been a significant health issue globally. However, theaflavin enriched black tea extract (BTE-TF) could restrain DN. Objective: The main objective of this exploration was to elucidate the effect of BTE-TF on DN, though the underlying mechanism remains unclear and requires further investigation. Method: The tea leaves were fermented to get black tea extract. Total phenolic content and HPLC were carried out to determine the phenolic content and theaflavin in the extract. Streptozotocin induced diabetic rats were treated with 100, 200, and 400 mg/kg/day BTE-TF extract for 12 weeks. Biochemical parameters like blood glucose, creatinine, blood urea nitrogen (BUN), triglyceride and antioxidant parameters of kidney tissue were measured. Histology, immunohistochemistry and TUNEL assay were performed to observe the effect of the extract with comparison to the standard drug (Metformin 200mg/kg/day). Result: Treated animals exhibited reduced blood glucose levels, blood urea nitrogen (BUN), creatinine, and serum triglycerides. Further, BTE-TF restored the histological alterations in the kidney. Chronic hyperglycaemia resulted in a significant increase in oxidative stress and pro-inflammatory cytokines of NF-kβ pathway. BTE-TF attenuated oxidative stress (p<0.01), inflammation (p<0.05) and apoptosis (p<0.05). Conclusion: This study suggests that BTE-TF exerts a protective role against diabetes-induced renal injury by ameliorating oxidative stress, inflammation, and apoptosis.


Author(s):  
Dasharath B. Shinde ◽  
Santosh S. Koratkar ◽  
Neeti Sharma ◽  
Ajinkya A. Shitole

<p><strong>Objective: </strong>To evaluate the <em>in vitro </em>antioxidant activity of liquorice (<em>Glycyrrhiza glabra) </em>against H<sub>2</sub>O<sub>2</sub> induced oxidative stress in HepG2 cell line.</p><p><strong>Methods: </strong>Antioxidant activity of methanolic extracts of <em>Glycyrrhiza glabra</em> was investigated by measuring total phenolic content using folin-ciocalteu reagent (FCR), free radical scavenging activity by DPPH and ferric reducing antioxidant power (FRAP). The presence of phenolic compounds and flavonoids in the extract was confirmed by Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. Furthermore, the protective effect of methanolic extract of <em>Glycyrrhiza glabra</em> against oxidative stress induced by H<sub>2</sub>O<sub>2 </sub>in HepG2 cells was investigated by MTT assay. HepG2 cells were exposed with five different treatments viz. liquorice, H<sub>2</sub>O<sub>2</sub>, ascorbic acid, H<sub>2</sub>O<sub>2</sub>+liquorice and H<sub>2</sub>O<sub>2</sub>+ascorbic acid, to explore the effect of the extract on malondialdehyde (MDA) production, catalase activity, and glutathione reductase levels.<strong></strong></p><p><strong>Results: </strong>The total phenolic content estimated in <em>Glycyrrhiza glabra </em>extract was found to be 241.47 µg per 1000 µg/ml of methanolic extract. It was found that as the concentration of the extract was increased both the free radical scavenging activity and ferric ion reducing power was also found to increase. LC-MS analysis confirmed the presence of eight different phenolic compounds in the methanolic extract which are possibly contributing to the antioxidant activity exhibited by the extract. It was also observed that liquorice treated HepG2 cells showed lower MDA and higher glutathione and catalase levels as compared to only H<sub>2</sub>O<sub>2 </sub>treated HepG2 cells where increased MDA production, decreased glutathione reductase and catalase production was observed.</p><p><strong>Conclusion: </strong>Our results thus conclude that, the methanolic extract of <em>Glycyrrhiza glabra </em>can be used as natural supplements in various disease conditions where oxidative stress has been reported. <strong></strong></p><p> </p>


Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 535 ◽  
Author(s):  
Francesco Gai ◽  
Magdalena Karamać ◽  
Michał A. Janiak ◽  
Ryszard Amarowicz ◽  
Pier Giorgio Peiretti

The aim of this study was to evaluate the differences in the antioxidant activity and phenolic profile of sunflower (Helianthus annuus L.) extracts obtained from the aerial parts of plants harvested at five growth stages. In vitro assays were used to determine the antioxidant activity, i.e., ABTS•+ and DPPH• scavenging activity, the ferric-reducing antioxidant power (FRAP) and the ability to inhibit β-carotene–linoleic acid emulsion oxidation. Phenolic compounds, such as mono- and dicaffeoylquinic acid isomers and caffeic acid hexose, were identified using the LC–TOF–MS/MS technique. The predominant compound during the growth cycle of the plant was 3,5-di-O-caffeoylquinic acid, whose content was the highest at the mid-flowering stage. The total phenolic content was also the highest in sunflowers at the mid-flowering stage. The main phenolic compound contents were closely correlated with ABTS•+ and DPPH• scavenging activity and FRAP. No significant correlation was found between the total phenolic content and the antioxidant activity in the emulsion system. The highest antiradical activity and FRAP were generally determined in older plants (mid-flowering and late flowering stages). In conclusion, the aerial parts of sunflowers, in particular those harvested at the mid-flowering stage, are a good plant material from which to obtain phenolic compound extracts, albeit mainly of one class (esters of caffeic acid and quinic acid), with high antioxidant activity.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Thandiwe Alide ◽  
Phanice Wangila ◽  
Ambrose Kiprop

Abstract Objective To investigate the effect of cooking temperature and time on the total phenolic content, total flavonoid content and antioxidant activity of aqueous and ethanolic extracts of garlic. Results The mean total phenolic content of fresh garlic were 303.07 ± 6.58 mg gallic acid equivalent per 100 g (GAE/100 g) and 638.96 ± 15.30 mg GAE/100 g of plant material for the aqueous and ethanolic extracts respectively. The mean total flavonoid content 109.78 ± 6.78 mg quercetin equivalent per 100 g (QE/100 g) and 258.47 ± 12.37 QE/100 g for aqueous and ethanolic extracts respectively. Fourier transform infrared spectral data showed absorptions in the range for carboxylic acids, hydroxyl group, esters, and alcohols, confirming the presence of phenols and flavonoids in the extracts. Cooking temperature had a significant effect on total phenolic content and total flavonoid content while cooking time did not have a significant effect on the phytochemicals and antioxidant activity.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Victor Paromov ◽  
Sudha Kumari ◽  
Marianne Brannon ◽  
Naga S. Kanaparthy ◽  
Hongsong Yang ◽  
...  

Sulfur mustard or mustard gas (HD) and its monofunctional analog, 2-chloroethyl ethyl sulfide (CEES), or “half-mustard gas,” are alkylating agents that induce DNA damage, oxidative stress, and inflammation. HD/CEES are rapidly absorbed in the skin causing extensive injury. We hypothesize that antioxidant liposomes that deliver both water-soluble and lipid-soluble antioxidants protect skin cells from immediate CEES-induced damage via attenuating oxidative stress. Liposomes containing water-soluble antioxidants and/or lipid-soluble antioxidants were evaluated usingin vitromodel systems. Initially, we found that liposomes containing encapsulated glutathione (GSH-liposomes) increased cell viability and attenuated production of reactive oxygen species (ROS) in HaCaT cells exposed to CEES. Next, GSH-liposomes were tested in a human epidermal model, EpiDerm. In the EpiDerm, GSH-liposomes administered simultaneously or 1 hour after CEES exposure (2.5 mM) increased cell viability, inhibited CEES-induced loss of ATP and attenuated changes in cellular morphology, but did not reduce caspase-3 activity. These findings paralleled the previously describedin vivoprotective effect of antioxidant liposomes in the rat lung and established the effectiveness of GSH-liposomes in a human epidermal model. This study provides a rationale for use of antioxidant liposomes against HD toxicity in the skin considering further verification in animal models exposed to HD.


2015 ◽  
Vol 5 (6) ◽  
pp. 377-384 ◽  
Author(s):  
Efat Jafari ◽  
Atefeh Bahmanzadegan ◽  
Gholamabbas Ghanbarian ◽  
Vahid Rowshan

2012 ◽  
Vol 1 (4) ◽  
pp. 66
Author(s):  
Alexander Clifford ◽  
Paul Dawson

<p>The antioxidant activity of collard greens was determined after exposed to eight different thermal treatments: 1) untreated raw group, 2) short simmer 3short simmer water 4) short simmer + saute’, 5) saute’ 6) long simmer 7) long simmer water 8) long simmer + saute’. After treatment, total phenolic content (TPC) expressed in gallic acid equivalents/sample concentration (GAE/conc.), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferrous ion chelating (FIC) antioxidant assays were determined. The sauté treated group showed the highest TPC (8.2858 GAE/conc.) followed by the raw group (8.0361) and the short simmer + sauté group (7.6227). The raw group showed the highest DPPH activity (7.7952% inhibition/conc.) followed by the sauté group (7.5877) and the short simmer + sauté group (7.4753). In both of these assays the addition of a sauté treatment to either short or long simmered treatment increased the antioxidant activity of samples compared to just the short or long simmer treatment alone. Additionally both TPC and DPPH assays showed greater antioxidant activity in the cooking water reserved from a long simmer treatment compared to the reserved cooking water of a short simmer treatment suggesting significant (p&lt;0.05) leeching of antioxidants from collard greens into the water related to the duration of aquathermal treatment. Similar trends were not found in the results of the FIC chelating assay where both long and short simmer treatment groups showed the highest chelating abilities and the reserved cooking water from both treatments showed the lowest chelating abilities. This suggests that chelators contained in collard greens were not relatively water soluble and therefore not negatively affected byaquathermal treatments.</p>


Sign in / Sign up

Export Citation Format

Share Document