scholarly journals Effect of Quercetin on Cell Cycle and Cyclin Expression in Ovarian Carcinoma and Osteosarcoma Cell Lines

2015 ◽  
Vol 10 (8) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Daniela Catanzaro ◽  
Eugenio Ragazzi ◽  
Caterina Vianello ◽  
Laura Caparrotta ◽  
Monica Montopoli

Resistance to chemotherapeutic drugs is a major problem in cancer treatment. The search for new interventions able to overcome this resistance may involve compounds of natural origin, such as flavonoids, ubiquitously present in many foods. In the present study, the cytotoxic effects and cell cycle modulation of the flavonoid quercetin were investigated in ovarian carcinoma (SKOV3) and osteosarcoma (U2OS) human cell lines and in their cisplatin (CDDP)-resistant counterparts (SKOV3/CDDP and U2OSPt cells, respectively). Quercetin (10–50 μM) caused evident changes in the distribution of cell cycle phases in the CDDP-resistant SKOV3/CDDP ovarian cell line. The levels of cyclin D1 and cyclin B1 were determined by means of Western blot in all cell lines incubated with quercetin (50 μM) for 48 hours. The cyclin D1 expression was significantly decreased following the treatment with quercetin in SKOV3 and U2OSPt cells, but not in SKOV3/CDDP and U2OS cells. The reduction of cyclin D1 level could be linked to the G1/S phase alteration found in quercetin-treated cells. Although cyclin B1 is required for G2/M phase, and despite our observation that quercetin influenced the G2/M phase of cell cycle, the flavonoid did not affect cyclin B1 levels in all cell lines, indicating the involvement of other possible mechanisms. These results suggest that quercetin, exceeding the resistance to CDDP, might become an interesting tool to evaluate cytotoxic activity in combination with chemotherapy drugs.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4360-4360
Author(s):  
SIN Chun-fung ◽  
Timothy Ming-hun Wan ◽  
Aarmann Anil Mohinani Mohan ◽  
Yinxia Qiu ◽  
Anan Jiao

Abstract T lymphoblastic leukaemia (T-ALL) is an aggressive haematological malignancy with poor outcome, especially for relapse/refractory disease. Early T- cell precursor acute lymphoblastic leukaemia (ETP-ALL) is a recently identified subtype of T-ALL with worse treatment outcome compared with other subtypes of T-ALL and treatment options are limited. T-ALL frequently harbors genetic aberrations leading to cell cycle dysregulation and it is one of the major molecular pathogenesis of T-ALL. WEE1 is a protein kinase that is responsible for inhibiting mitosis with unrepaired damaged DNA via inactivating CDK1. WEE1 is highly express in adult T-ALL and its overexpression is associated with adverse prognosis in various cancers. Inhibiting WEE1 expression is a novel approach of therapy. Bortezomib is a 26S proteosome inhibitor and it is FDA approved for treating plasma cell myeloma and mantle cell lymphoma. Bortezomib had been demonstrated therapeutic efficacy in clinical setting for relapse/refractory paediatric T-ALL and B-ALL when combined with chemotherapy. Despite its therapeutic efficacy in clinical studies, the mechanism of action of Bortezomib in T-ALL remain uncertain. The role of Bortezomib in cell cycle modulation had not been established in T-ALL. Moreover, it had not been demonstrated that the effect of Bortezomib in WEE1 expression in T-ALL. Here, we present our study that demonstrated the therapeutic efficacy of Bortezomib in treating T-ALL via cell cycle modulation and downregulation of WEE1 by Bortezomib. T-ALL cell lines including MOLT16, MOLT4, LOUCY and CEM were used in the study. Cell viability was measured by trypan blue. Apoptosis and cell cycle analysis were measured by flow cytometry. Western blot of WEE1, p53, cyclin B1, p21 and p27 were performed. Our result showed that Bortezomib reduce the cell viability of T-ALL cell lines in dose and time-dependent manner. Bortezomib was also sensitive towards LOUCY, a T-ALL cell line with ETP-ALL phenotype. It implied that Bortezomib could be a promising therapy for ETP-ALL. Bortezomib also triggered apoptosis in various T-ALL and the effect of apoptosis was more pronounced after 72 hours of treatment when compared with 24-hour. Again, Bortezomib was able to induce apoptosis in LOUCY cell line. G2/M cell cycle arrest was observed in various T-ALL upon treatment of Bortezomib. The effect on cell cycle modulation was also observed in LOUCY cell line. The protein expression of p21 and p27 were increased after the treatment of Bortezomib. The level of cyclin B1 was increased also. There was upregulation of p53 after Bortezomib treatment. Strikingly, the protein expression level of WEE1 was reduced. The findings of WEE1 downregulation by Bortezomib is a novel findings. We also showed that Bortezomib downregulate WEE1 mRNA expression by quantitative PCR. Our study showed that Bortezomib is active against T-ALL cell lines, including ETP-ALL cell line, LOUCY and modulates cell cycle with G2/M arrest. Bortezomib had been shown to increase the level of p21, p27 and cyclin B1 and induced G2/M cell cycle arrest in glioblastoma cells. However, studies on cell cycle modulation by Bortezomib in T-ALL are scarce. Here, we demonstrated Bortezomib stabilized p21, p27 and upregulation of cyclin B1 in T-ALL as well, which could account for the G2/M cell cycle arrest. We first showed that downregulation of WEE1 after treatment with Bortezomib, in protein level as well as in mRNA level. Recent study showed that inhibition of WEE1 is a novel target of therapy in T-ALL. WEE1 is upregulated in T-ALL to prevent entry of mitosis with unrepaired damaged DNA. The downregulation of WEE1 by Bortezomib as showed by our study could reverse its effect and leads to apoptosis of leukaemic cells. In summary, our study provides the insight on mechanism of action of Bortezomib in modulating cell cycle in T-ALL. Moreover, it is the first study to demonstrate WEE1 downregulation by Bortezomib in T-ALL. These findings not only enhance our understanding of mechanism of action of Bortezomib in T-ALL, but also rationalized the use of certain synergistics combination therapy with Bortezomib in treating T-ALL, e.g., chemotherapeutic agents, PARP inhibitors which could damage DNA of leukaemic cells. Further research is needed to explore those combination therapy in T-ALL and molecular mechanism of downregulation of WEE1 by Bortezomib in T-ALL. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Ying Zhao ◽  
Haokun Liu ◽  
Mingzhen Fan ◽  
Yuyang Miao ◽  
Xiaoe Zhao ◽  
...  

Abstract BackgroundGoat is an important dairy animal. During lactation, maintaining a high proliferative activity in goat mammary epithelial cells (GMECs) is significant to improve the yield and composition of goat milk. Estrogen is an essential hormone in epithelial cell proliferation and ductal morphogenesis of mammary gland. G protein-coupled receptor 30 (GPR30) is a novel membrane receptor of estrogen. However, the relationship between estrogen/GPR30 signaling and proliferation of goat mammary epithelial cells has not been reported. And the molecular mechanisms underlying the proliferative effect of estrogen via GPR30 on GMECs remain unclear.ResultsTo investigate the effect of estrogen/GPR30 signaling on GMECs proliferation, goat mammary epithelial cells, which expressed cytokeratin 18 and β-casein, were isolated and identified, defining their mammary alveolar epithelium origination. Estrogen and GPR30 agonist G1 obviously promoted the proliferation of GEMCs, in contrast, GPR30 antagonist G15 partly abolished estrogen-induced cell proliferation. Remarkably, the stimulatory effect of estrogen and G1 on GMECs growth was suppressed by GPR30 knockdown detected by cell counting assay, CCK-8 assay, and BrdU assay, suggesting that estrogen/GPR30 signaling was involved in GMECs proliferation. Additionally, G15 decreased cyclin D1, cyclin B1, CDK1, and p-CDK1 expression, resulting in cell cycle arrest in the G2/M phase via a down-regulated phosphorylation of Erk1/2 and Akt compared with estrogen alone. What’s more, knock-down GPR30 led to an accumulation in the G2/M phase and inhibition of cyclin D1, cyclin B1, CDK1, and p-CDK1 expression via a down-regulation of phosphorylated Erk1/2 and Akt despite the presence of estrogen and G1. Furthermore, MEK inhibitor and PI3K inhibitor decreased the expression of cyclin D1, cyclin B1, CDK1, and p-CDK1, and repressed estrogen-induced and G1-driven promotion of cell growth. It indicated that estrogen/GPR30 signaling played an important role in GMECs proliferation by affecting cell cycle progression via MEK/Erk&PI3K/Akt signaling pathway.ConclusionThis study may provide a new insight into the effect of estrogen/GPR30 signaling on the regulatory action of goat mammary gland development.


2016 ◽  
Vol 39 (6) ◽  
pp. 2297-2307 ◽  
Author(s):  
Lifeng Liu ◽  
Ying Xu ◽  
Russel J. Reiter ◽  
Yutao Pan ◽  
Di Chen ◽  
...  

Background: In a previous study, we found that melatonin inhibits MG-63 osteosarcoma cell proliferation; however, the underlying mechanisms remain elusive. Mitogen-activated protein kinase (MAPK) and Akt signaling pathways play key roles in the anticancer effects of melatonin. Aims: The present study investigated whether MAPK and Akt signaling pathways are involved in melatonin's antiproliferative actions on the human MG-63 osteosarcoma cells. Methods/Results: Western blot analysis confirmed that melatonin significantly inhibited phosphorylation of ERK1/2 but not p38, JNK, or Akt. The expression of ERK1/2, p38, JNK, and Akt was not altered by melatonin. PD98059 and melatonin alone, and especially in combination, significantly inhibited cell proliferation. The changes included G1 and G2/M phase arrest of the cell cycle, and a downregulation of the expression at both the protein and mRNA levels of cyclin D1 and CDK4 (related to the G1 phase) and of cyclin B1 and CDK1 (related to the G2/M phase) as measured by flow cytometry after propidium iodide staining, and both western blot and real-time PCR, respectively. Furthermore, the combination of PD98059 and melatonin synergistically and markedly augmented the action of either agent alone. Co-immunoprecipitation further confirmed that there was an interaction between p-ERK1/2 and cyclin D1, CDK4, cyclin B1, or CDK1, which was blunted in the presence of melatonin or PD98059. Conclusion: These findings suggest that melatonin's antiproliferative action is mediated by inhibition of the ERK1/2 signaling pathway rather than the p38, JNK, or Akt pathways.


2013 ◽  
Vol 31 (1) ◽  
pp. 370-375 ◽  
Author(s):  
IRENE QUATTRINI ◽  
AMALIA CONTI ◽  
LAURA PAZZAGLIA ◽  
CHIARA NOVELLO ◽  
STEFANO FERRARI ◽  
...  

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 373
Author(s):  
Chiang-Wen Lee ◽  
Cathy Chia-Yu Huang ◽  
Miao-Ching Chi ◽  
Kuan-Han Lee ◽  
Kuo-Ti Peng ◽  
...  

Osteosarcoma, a primary bone tumor, responds poorly to chemotherapy and radiation therapy in children and young adults; hence, as the basis for an alternative treatment, this study investigated the cytotoxic and antiproliferative effects of naringenin on osteosarcoma cell lines, HOS and U2OS, by using cell counting kit-8 and colony formation assays. DNA fragmentation and the increase in the G2/M phase in HOS and U2OS cells upon treatment with various naringenin concentrations were determined by using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and Annexin V/propidium iodide double staining, respectively. Flow cytometry was performed, and 2′,7′-dichlorodihydrofluorescein diacetate, JC-1, and Fluo-4 AM ester probes were examined for reactive oxygen species (ROS) generation, mitochondrial membrane potential, and intracellular calcium levels, respectively. Caspase activation, cell cycle, cytosolic and mitochondrial, and autophagy-related proteins were determined using with western blotting. The results indicated that naringenin significantly inhibited the viability and proliferation of osteosarcoma cells in a dose-dependent manner. In addition, naringenin induced cell cycle arrest in osteosarcoma cells by inhibiting cyclin B1 and cyclin-dependent kinase 1 expression and upregulating p21 expression. Furthermore, naringenin significantly inhibited the growth of osteosarcoma cells by increasing the intracellular ROS level. Naringenin induced endoplasmic reticulum (ER) stress-mediated apoptosis through the upregulation of ER stress markers, GRP78 and GRP94. Naringenin caused acidic vesicular organelle formation and increased autophagolysosomes, microtubule-associated protein-light chain 3-II protein levels, and autophagy. The findings suggest that the induction of cell apoptosis, cell cycle arrest, and autophagy by naringenin through mitochondrial dysfunction, ROS production, and ER stress signaling pathways contribute to the antiproliferative effect of naringenin on osteosarcoma cells.


1994 ◽  
Vol 125 (3) ◽  
pp. 625-638 ◽  
Author(s):  
J Lukas ◽  
H Müller ◽  
J Bartkova ◽  
D Spitkovsky ◽  
A A Kjerulff ◽  
...  

The retinoblastoma gene product (pRB) participates in the regulation of the cell division cycle through complex formation with numerous cellular regulatory proteins including the potentially oncogenic cyclin D1. Extending the current view of the emerging functional interplay between pRB and D-type cyclins, we now report that cyclin D1 expression is positively regulated by pRB. Cyclin D1 mRNA and protein is specifically downregulated in cells expressing SV40 large T antigen, adenovirus E1A, and papillomavirus E7/E6 oncogene products and this effect requires intact RB-binding, CR2 domain of E1A. Exceptionally low expression of cyclin D1 is also seen in genetically RB-deficient cell lines, in which ectopically expressed wild-type pRB results in specific induction of this G1 cyclin. At the functional level, antibody-mediated cyclin D1 knockout experiments demonstrate that the cyclin D1 protein, normally required for G1 progression, is dispensable for passage through the cell cycle in cell lines whose pRB is inactivated through complex formation with T antigen, E1A, or E7 oncoproteins as well as in cells which have suffered loss-of-function mutations of the RB gene. The requirement for cyclin D1 function is not regained upon experimental elevation of cyclin D1 expression in cells with mutant RB, while reintroduction of wild-type RB into RB-deficient cells leads to restoration of the cyclin D1 checkpoint. These results strongly suggest that pRB serves as a major target of cyclin D1 whose cell cycle regulatory function becomes dispensable in cells lacking functional RB. Based on available data including this study, we propose a model for an autoregulatory feedback loop mechanism that regulates both the expression of the cyclin D1 gene and the activity of pRB, thereby contributing to a G1 phase checkpoint control in cycling mammalian cells.


2020 ◽  
Author(s):  
Gee In Jung ◽  
Kunsoo Rhee

ABSTRACTCancer cells frequently include supernumerary centrioles. Here, we generated TP53;PCNT;CEP215 triple knockout cell lines and observed precocious separation and amplification of the centrioles at M phase. Many of the triple KO cells maintained supernumerary centrioles throughout the cell cycle. The M-phase-assembled centrioles lack an ability to function as templates for centriole assembly during S phase. They also lack an ability to organize microtubules in interphase. However, we found that a fraction of them acquired an ability to organize microtubules during M phase. Our works provide an example how supernumerary centrioles behave in dividing cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Li Yin ◽  
Jing Wu ◽  
Jianfeng Wu ◽  
Jinjun Ye ◽  
Xuesong Jiang ◽  
...  

This study aims to evaluate the radiosensitization effect of nedaplatin on nasopharyngeal carcinoma (NPC) cell lines with different Epstein-Barr virus (EBV) status. Human NPC cell lines CNE-2 (EBV-negative) and C666 (EBV-positive) were treated with 0–100 μg/mL nedaplatin, and inhibitory effects on cell viability and IC50were calculated by MTS assay. We assessed changes in radiosensitivity of cells by MTS and colony formation assays, and detected the apoptosis index and changes in cell cycle by flow cytometry. MTS assay showed that nedaplatin caused significant cytotoxicity in CNE-2 and C666 cells in a time- and dose-dependent manner. After 24 h, nedaplatin inhibited growth of CNE-2 and C666 cells with IC50values of 34.32 and 63.69 μg/mL, respectively. Compared with radiation alone, nedaplatin enhanced the radiation effect on both cell lines. Nedaplatin markedly increased apoptosis and cell cycle arrest in G2/M phase. Nedaplatin radiosensitized human NPC cells CNE-2 and C666, with a significantly greater effect on the former. The mechanisms of radiosensitization include induction of apoptosis and enhancement of cell cycle arrest in G2/M phase.


2009 ◽  
Vol 125 (11) ◽  
pp. 2631-2642 ◽  
Author(s):  
Guo-Qing Wu ◽  
Dan Xie ◽  
Guo-Feng Yang ◽  
Yi-Ji Liao ◽  
Shi-Juan Mai ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Jian-Hong Lin ◽  
Pei-Ching Ting ◽  
Wen-Sen Lee ◽  
Hung-Wen Chiu ◽  
Chun-An Chien ◽  
...  

Bone marrow-derived mesenchymal cells (BM-MSCs) are able to differentiate into adipocytes, which can secrete adipokines to affect BM-MSC proliferation and differentiation. Recent evidences indicated that adipocytes can secrete fatty acid metabolites, such as palmitic acid methyl ester (PAME), which is able to cause vasorelaxation and exerts anti-inflammatory effects. However, effects of PAME on BM-MSC proliferation remain unclear. The aim of this study was to investigate the effect of PAME on human BM-MSC (hBM-MSC) proliferation and its underlying molecular mechanisms. hBM-MSCs were treated with PAME for 48 h and then subjected to various analyses. The results from the present study show that PAME significantly reduced the levels of G2/M phase regulatory proteins, cyclin-dependent kinase 1 (Cdk1), and cyclin B1 and inhibited proliferation in hBM-MSCs. Moreover, the level of Mdm2 protein decreased, while the levels of p21 and p53 protein increased in the PAME-treated hBM-MSCs. However, PAME treatment did not significantly affect apoptosis/necrosis, ROS generation, and the level of Cdc25C protein. PAME also induced intracellular acidosis and increased intracellular Ca2+ levels. Cotreatment with PAME and Na+/H+ exchanger inhibitors together further reduced the intracellular pH but did not affect the PAME-induced decreases of cell proliferation and increases of the cell population at the G2/M phase. Cotreatment with PAME and a calcium chelator together inhibited the PAME-increased intracellular Ca2+ levels but did not affect the PAME-induced cell proliferation inhibition and G2/M cell cycle arrest. Moreover, the half-life of p53 protein was prolonged in the PAME-treated hBM-MSCs. Taken together, these results suggest that PAME induced p53 stabilization, which in turn increased the levels of p53/p21 proteins and decreased the levels of Cdk1/cyclin B1 proteins, thereby preventing the activation of Cdk1, and eventually caused cell cycle arrest at the G2/M phase. The findings from the present study might help get insight into the physiological roles of PAME in regulating hBM-MSC proliferation.


Sign in / Sign up

Export Citation Format

Share Document