scholarly journals Anti-Aging Effects of Gyrophoric Acid on UVA-Irradiated Normal Human Dermal Fibroblasts

2020 ◽  
Vol 15 (4) ◽  
pp. 1934578X2091954
Author(s):  
Joong Hyun Shim

This research was conducted to identify the anti-aging effects of gyrophoric acid on the skin, using normal human dermal fibroblasts. The anti-aging effects of gyrophoric acid on dermal fibroblasts were demonstrated through cell viability, verification of collagen, type I, alpha 1 (COL1A1)/COL3A1/matrix metalloproteinases 1 (MMP1) messenger ribonucleic acid (mRNA) expression levels with quantitative real-time reverse-transcription polymerase chain reaction, and protein estimation using type I collagen/MMP1-enzyme-linked immunosorbent assay. Further, the effects of gyrophoric acid on superoxide dismutases (SODs)/catalase were investigated by assessing their mRNA expression. In ultraviolet A (UVA)-treated dermal fibroblasts, gyrophoric acid was observed to increase mRNA levels of COL1A1/COL3A1/SOD2 genes and type I collagen protein levels, consistent with its anti-aging role. Furthermore, gyrophoric acid treatment decreased both MMP1 mRNA and protein expression levels. Therefore, the results of this study demonstrate that gyrophoric acid can be considered as an important natural compound with potent anti-aging effects on the skin. Based on the findings of this study, further research about the mechanism of action of gyrophoric acid should be pursued so as to develop novel anti-aging strategies not only in the field of cosmetics but also for healthcare.

2016 ◽  
Vol 81 (2) ◽  
pp. 376-379 ◽  
Author(s):  
Eriko Uehara ◽  
Hideki Hokazono ◽  
Takako Sasaki ◽  
Hidekatsu Yoshioka ◽  
Noritaka Matsuo

Cosmetics ◽  
2020 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Young Joo Kim ◽  
Hwa Jun Cha

Inonotus obliquus, which is parasitic on birch and other trees, is a fungus in the family Hymenochaetaceae. In this study, we investigated whether Inonotus obliquus extracts used in traditional medicine were decreased in the expression of matrix metalloproteinases-1 (MMP-1) in the normal human dermal fibroblasts. As shown in our results, extracts of Inonotus obliquus decreased MMP1 expression in oxidative stress-exposed normal human dermal fibroblasts. Additionally, Inonotus obliquus extracts decreased AP-1 transcriptional activity and phospho-JNK in oxidative stress-exposed normal human dermal fibroblasts. Oxidative stress mediated the elevation of MMP1 mRNA expression and was well regulated by the JNK-AP-1 axis. Therefore, the results suggest that Inonotus obliquus extracts decreased MMP1 mRNA expression by regulating JNK-AP-1 axis. Additionally, Inonotus obliquus extracts have the potential to reduce collagen destruction and the formation of wrinkles and to be used as a cosmetic ingredient.


2018 ◽  
Vol 41 (11) ◽  
pp. 779-788 ◽  
Author(s):  
Ayesha Idrees ◽  
Valeria Chiono ◽  
Gianluca Ciardelli ◽  
Siegfried Shah ◽  
Richard Viebahn ◽  
...  

Three-dimensional cell culture systems are urgently needed for cytocompatibility testing of biomaterials. This work aimed at the development of three-dimensional in vitro dermal skin models and their optimization for cytocompatibility evaluation. Initially “murine in vitro dermal construct” based on L929 cells was generated, leading to the development of “human in vitro dermal construct” consisting of normal human dermal fibroblasts in rat tail tendon collagen type I. To assess the viability of the cells, different assays CellTiter-Blue®, RealTime-Glo™ MT, and CellTiter-Glo® (Promega) were evaluated to optimize the best-suited assay to the respective cell type and three-dimensional system. Z-stack imaging (Live/Dead and Phalloidin/DAPI-Promokine) was performed to visualize normal human dermal fibroblasts inside matrix revealing filopodia-like morphology and a uniform distribution of normal human dermal fibroblasts in matrix. CellTiter-Glo was found to be the optimal cell viability assay among those analyzed. CellTiter-Blue reagent affected the cell morphology of normal human dermal fibroblasts (unlike L929), suggesting an interference with cell biological activity, resulting in less reliable viability data. On the other hand, RealTime-Glo provided a linear signal only with a very low cell density, which made this assay unsuitable for this system. CellTiter-Glo adapted to three-dimensional dermal construct by optimizing the “shaking time” to enhance the reagent penetration and maximum adenosine triphosphate release, indicating 2.4 times higher viability value by shaking for 60 min than for 5 min. In addition, viability results showed that cells were viable inside the matrix. This model would be further advanced with more layers of skin to make a full thickness model.


1987 ◽  
Vol 247 (3) ◽  
pp. 597-604 ◽  
Author(s):  
J Varga ◽  
J Rosenbloom ◽  
S A Jimenez

It has been previously shown that transforming growth factor beta (TGF beta) is capable of stimulating fibroblast collagen and fibronectin biosynthesis. The purpose of this study was to examine the mechanisms involved in TGF beta stimulation of fibroblast biosynthetic activity. Our results indicate that TGF beta causes a marked enhancement of the production of types I and III collagens and fibronectin by cultured normal human dermal fibroblasts. The rate of collagen production by fibroblasts exposed to TGF beta was 2-3-fold greater than that of control cells. These effects were associated with a 2-3-fold increase in the steady-state amounts of types I and III collagen mRNAs and a 5-8-fold increase in the amounts of fibronectin mRNAs as determined by dot-blot hybridization with specific cloned cDNA probes. In addition, the increased production of collagen and fibronectin and the increased amounts of their corresponding mRNAs remained elevated for at least 72 h after removal of TGF beta. These findings suggest that TGF beta may play a major role in the normal regulation of extracellular matrix production in vivo and may contribute to the development of pathological states of fibrosis.


2019 ◽  
Vol 14 (8) ◽  
pp. 1934578X1987242
Author(s):  
Yumin Kim ◽  
Kyung Suk Bae

Ultraviolet radiation induces skin photoaging, which is associated with the elevation of matrix metalloproteinase-1 (MMP-1) and the decrease of procollagen. Nasturtium officinale plays a well-known role in the treatment of sulfur-containing compounds and their important role in protecting human health. However, their skin protective activity toward UVB-induced photodamage remains unclear. In the present study, we investigated the protective effect of indole 3-acetonitrile-4-methoxy-2- S-β-d-glucopyranoside (IAMG) from N. officinale on UVB-irradiated normal human dermal fibroblasts (NHDF). Our results show that IAMG enhanced NHDF cell migration. The UVB-induced increases in MMP-1 and decrease in type I procollagen were ameliorated by IAMG treatment. Taken together, our data strongly suggest that IAMG from N. officinale could reduce UVB-induced photodamage.


Author(s):  
Joong Hyun Shim

Collagen type I production decreases with aging, leading to wrinkles and impaired skin function. Prostaglandin E2 (PGE2), a lipid-derived signaling molecule produced from arachidonic acid by cyclo-oxygenase, inhibits collagen production and induces matrix metallopeptidase 1 (MMP1) expression by fibroblasts in vitro. PGE2-induced collagen expression inhibition and MMP1 promotion are aging mechanisms. This study investigated the role of E-prostanoid 1 (EP1) in PGE2 signaling in normal human dermal fibroblasts (NHDFs). When EP1 expression was inhibited by EP1 small interfering RNA (siRNA), there were no significant changes in messenger RNA (mRNA) levels of collagen, type I, alpha 1 (COL1A1)/MMP1 between siRNA-transfected NHDFs and siRNA-transfected NHDFs with PGE2. This result showed that EP1 is a PGE2 receptor. Extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation after PGE2 treatment significantly increased by ~2.5 times. In addition, PGE2 treatment increased the intracellular Ca2+ concentration in NHDFs. These results indicated that PGE2 is directly associated with EP1 pathway–regulated ERK1/2 and inositol trisphosphate (IP3) signaling in NHDFs.


Sign in / Sign up

Export Citation Format

Share Document