scholarly journals Anti-Inflammatory Effects of 6,7-Dihydroxy-4-Methylcoumarin on LPS-Stimulated Macrophage Phosphorylation in MAPK Signaling Pathways

2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110209
Author(s):  
Yun Sil Kang ◽  
You Chul Chung ◽  
Jung No Lee ◽  
Bong Seok Kim ◽  
Chang-Gu Hyun

Coumarin derivatives, such as esculetin, have various physiological functions, including antioxidant, anti-inflammatory, antibacterial, antiviral, and anti-cancer. 6,7-Dihydroxy-4-methylcoumarin (6,7-DH-4MC) is a derivative of esculetin, and its anti-inflammatory effect and mechanism in macrophages have not been studied. In this study, the anti-inflammatory activity of 6,7-DH-4MC was evaluated by measuring the expression of inflammatory factors (NO and PGE2) and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in LPS-stimulated RAW 264.7 macrophages. The results revealed that 6,7-DH-4MC significantly reduced NO levels and PGE2 expression without inducing cytotoxicity; it was confirmed that the inhibition of NO and PGE2 expression was related to iNOS and COX-2 downregulation in response to 6,7-DH-4MC treatment. Moreover, 6,7-DH-4MC decreased the levels of pro-inflammatory cytokines, such as IL-1β and IL-6, in a dose-dependent manner. Mechanistic studies revealed reduced phosphorylation of ERK and p38-MAPK upon 6,7-DH-4MC treatment. Furthermore, the degradation of IκB-α and phosphorylation of NF-κB in cells treated with LPS were interrupted by 6,7-DH-4MC treatment. These results suggest that 6,7-DH-4MC is a potential therapeutic agent for inflammatory diseases. To the best of our knowledge, this is the first report demonstrating the anti-inflammatory effects of 6,7-DH-4MC in RAW 264.7 cells via MAPK and NF-κB signaling pathways.

2020 ◽  
Vol 48 (08) ◽  
pp. 1875-1893
Author(s):  
Da-Sol Kim ◽  
Kyoung-Eun Park ◽  
Yeon-Ju Kwak ◽  
Moon-Kyoung Bae ◽  
Soo-Kyung Bae ◽  
...  

Inflammation regulation is essential for maintaining healthy functions and normal homeostasis of the body. Porphyromonas gingivalis (P. gingivalis) is a gram-negative anaerobic bacterium and a major pathogen that causes oral inflammation and other systemic inflammations. This study aims to examine the anti-inflammatory effects of Agrimonia pilosa Ledeb root extracts (APL-ME) in Porphyromonas gingivalis LPS-induced RAW 264.7 cells and find anti-inflammatory effect compounds of APL-ME. The anti-inflammatory effects of APL-ME were evaluated anti-oxidant activity, cell viability, nitrite concentration, pro-inflammatory cytokines (interleukin-1[Formula: see text], interleukin-6, tumor necrosis factor (TNF)-[Formula: see text], and anti-inflammatory cytokine (interleukin-10 (IL-10)). Also, Inflammation related genes and proteins, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), expression were decreased by APL-ME and mitogen-activated protein kinase (MAPK) signaling proteins expression was regulated by APL-ME. Liquid chromatography-mass spectrometer (LC/MS)-MS analysis results indicated that several components were detected in APL-ME. Our study indicated that APL-ME suppressed nitrite concentrations, pro-inflammatory cytokines such as IL-1[Formula: see text], IL-6 and TNF-[Formula: see text] in P. gingivalis LPS induced RAW 264.7 cells. However, IL-10 expression was increased by ALP-ME. In addition, protein expressions of COX-2 and iNOS were inhibited APL-ME extracts dose-dependently. According to these results, APL-ME has anti-inflammatory effects in P. gingivalis LPS induced RAW 264.7 cells.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5351
Author(s):  
Jin-Kyu Kang ◽  
You-Chul Chung ◽  
Chang-Gu Hyun

Persistent inflammatory reactions promote mucosal damage and cause dysfunction, such as pain, swelling, seizures, and fever. Therefore, in this study, in order to explore the anti-inflammatory effect of 6-methylcoumarin (6-MC) and suggest its availability, macrophages were stimulated with lipopolysaccharide (LPS) to conduct an in vitro experiment. The effects of 6-MC on the production and levels of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α) and inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2)) in LPS-stimulated RAW 264.7 cells were examined. The results showed that 6-MC reduced the levels of NO and PGE2 without being cytotoxic. In addition, it was demonstrated that the increase in the expression of pro-inflammatory cytokines caused by LPS stimulation, was decreased in a concentration-dependent manner with 6-MC treatment. Moreover, Western blot results showed that the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), which increased with LPS treatment, were decreased by 6-MC treatment. Mechanistic studies revealed that 6-MC reduced the phosphorylation of the mitogen-activated protein kinase (MAPK) family and IκBα in the MAPK and nuclear factor-kappa B (NF-κB) pathways, respectively. These results suggest that 6-MC is a potential therapeutic agent for inflammatory diseases that inhibits inflammation via the MAPK and NF-κB pathways.


Molecules ◽  
2018 ◽  
Vol 23 (8) ◽  
pp. 1880 ◽  
Author(s):  
Salman Islam ◽  
Jung Lee ◽  
Adeeb Shehzad ◽  
Eun-Mi Ahn ◽  
You Lee ◽  
...  

Inflammation is considered the root cause of various inflammatory diseases, including cancers. Decursinol angelate (DA), a pyranocoumarin compound obtained from the roots of Angelica gigas, has been reported to exhibit potent anti-inflammatory effects. In this study, the anti-inflammatory effects of DA on the MAP kinase and NFκB signaling pathways and the expression of pro-inflammatory cytokines were investigated in phorbol 12-myristate 13-acetate (PMA)-activated human promyelocytic leukemia (HL-60) and lipopolysaccharide (LPS)-stimulated macrophage (Raw 264.7) cell lines. PMA induced the activation of the MAP kinase-NFκB pathway and the production of pro-inflammatory cytokines in differentiated monocytes. Treatment with DA inhibited the activation of MAP kinases and the translocation of NFκB, and decreased the expression and exogenous secretion of IL-1β and IL-6. Furthermore, LPS-stimulated Raw 264.7 cells were found to have increased expression of M1 macrophage-associated markers, such as NADPH oxidase (NOX) and inducible nitric oxide synthase (iNOS), and the M2 macrophage-associated marker CD11b. LPS also activated pro-inflammatory cytokines and Erk-NFκB. Treatment with DA suppressed LPS-induced macrophage polarization and the inflammatory response by blocking Raf-ERK and the translocation of NFκB in Raw 264.7 cells. Treatment with DA also inhibited the expression of pro-inflammatory cytokines, such as IL-1β and IL-6, NOX, and iNOS in Raw 264.7 cells. These results suggest that DA has the potential to inhibit macrophage polarization and inflammation by blocking the activation of pro-inflammatory signals. These anti-inflammatory effects of DA may contribute to its potential use as a therapeutic strategy against various inflammation-induced cancers.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 275 ◽  
Author(s):  
Fanhui Kong ◽  
Bae Lee ◽  
Kun Wei

5-Hydroxymethylfurfural (5-HMF) is found in many food products including honey, dried fruits, coffee and black garlic extracts. Here, we investigated the anti-inflammatory activity of 5-HMF and its underlying mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. 5-HMF pretreatment ranging from 31.5 to 126.0 μg/mL reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in a concentration-dependent manner in LPS-stimulated cells. Moreover, 5-HMF-pretreated cells significantly down-regulated the mRNA expression of two major inflammatory mediators, nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and suppressed the production of pro-inflammatory cytokines, as compared with the only LPS-stimulated cells. 5-HMF suppressed the phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), IκBα, NF-κB p65, the mammalian target of rapamycin (mTOR) and protein kinase B (Akt). Besides, 5-HMF was proved to inhibit NF-κB p65 translocation into nucleus to activate inflammatory gene transcription. These results suggest that 5-HMF could exert the anti-inflammatory activity in the LPS-induced inflammatory response by inhibiting the MAPK, NF-κB and Akt/mTOR pathways. Thus, 5-HMF could be considered as a therapeutic ingredient in functional foods.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chunxiu Zhou ◽  
Xutao Zhang ◽  
Cheng-Chao Ruan ◽  
Wai San Cheang

Abstract Background 3,3′,4,5′-tetramethoxy-trans-stilbene (3,3′,4,5′-TMS) and 3,4′,5-trimethoxy-trans-stilbene (3,4′,5-TMS) are two methoxy derivatives of resveratrol. Previous researches have proved that resveratrol and its analogues have anti-inflammatory effect through suppressing mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. This study aims to study whether 3,3′,4,5′-TMS and 3,4′,5-TMS alleviate inflammation and the underlying mechanism. Methods RAW 264.7 macrophage cells were treated with lipopolysaccharide (LPS) to induce inflammation and pretreated with 3,3′,4,5′-TMS or 3,4′,5-TMS. Cell viability was measured with the 3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) release was detected by Griess reagent. The secretions of pro-inflammatory cytokines were assessed by ELISA kits. Protein expressions of signaling molecules were determined by Western blotting. Reactive oxygen species (ROS) production was detected by fluorescence staining and malondialdehyde (MDA) assay. Results 3,3′,4,5′-TMS and 3,4′,5-TMS suppressed LPS-induced NO release and pro-inflammatory cytokines (IL-6 and TNF-α) secretions in a dose-dependent manner in RAW 264.7 cells. 3,3′,4,5′-TMS and 3,4′,5-TMS significantly down-regulated the LPS-induced expressions of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and partially suppressed the activation of MAPK (phosphorylation of p38, JNK, ERK), and NF-κB (phosphorylation of IKKα/β, p65 and IκBα) signaling pathways; where phosphorylation of ERK and p65 was mildly but not significantly decreased by 3,3′,4,5′-TMS. LPS-induced NF-κB/p65 nuclear translocation was inhibited by both 3,3′,4,5′-TMS and 3,4′,5-TMS. Moreover, both resveratrol derivatives decreased the ROS levels. Conclusions 3,3′,4,5′-TMS and 3,4′,5-TMS significantly suppress LPS-induced inflammation in RAW 264.7 cells through inhibition of MAPK and NF-κB signaling pathways and also provide anti-oxidative effect. This study reveals potential therapeutic applications of 3,3′,4,5′-TMS and 3,4′,5-TMS for inflammatory diseases.


2020 ◽  
Vol 21 (10) ◽  
pp. 3439 ◽  
Author(s):  
Thanh Q. C. Nguyen ◽  
Tran Duy Binh ◽  
Tuan L. A. Pham ◽  
Yen D. H. Nguyen ◽  
Dai Thi Xuan Trang ◽  
...  

Lasia spinosa (L.) Thwaites was used as a traditional medicine to treat many inflammatory diseases for centuries. However, its effects on the inflammatory response are not yet characterized. In this study, we investigated the anti-inflammatory activities of L. spinosa leaf extract in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. We found that ethanol extracts of L. spinosa leaves showed anti-oxidant activity due to the presence of high levels of polyphenolic compounds. Treatment with the leaf extract significantly repressed the production of inflammatory mediators such as nitric oxide and reactive oxygen species and the expression of pro-inflammatory cytokines in the LPS-stimulated RAW 264.7 cells. Moreover, L. spinosa leaf extract treatment prevented activation of the nuclear factor-kappa B pathway by inhibiting nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) degradation. Furthermore, the mitogen-activated kinase and phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathways were suppressed upon treatment with the leaf extract. In addition to suppressing inflammatory factors, the extract also activated the nuclear factor erythroid 2-related factor 2/heme-oxygenase-1 pathway. We propose that L. spinosa leaf extract has the potential as an effective therapeutic agent for alleviating oxidative stress and excessive inflammation.


2019 ◽  
Vol 86 (2) ◽  
pp. 171-176 ◽  
Author(s):  
Chenxu Zhao ◽  
Yazhou Wang ◽  
Xue Yuan ◽  
Guoquan Sun ◽  
Bingyu Shen ◽  
...  

AbstractSubacute ruminal acidosis (SARA) can increase the level of inflammation and induce rumenitis in dairy cows. Berberine (BBR) is the major active component of Rhizoma Coptidis, which is a type of Chinese anti-inflammatory drug for gastrointestinal diseases. The purpose of this study was to investigate the anti-inflammatory effects of BBR on lipopolysaccharide (LPS)-stimulated rumen epithelial cells (REC) and the underlying molecular mechanisms. REC were cultured and stimulated with LPS in the presence or absence of different concentrations of BBR. The results showed that cell viability was not affected by BBR. Moreover, BBR markedly decreased the concentrations and mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the LPS-treated REC in a dose-dependent manner. Importantly, Western blotting analysis showed that BBR significantly suppressed the protein expression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein (MyD88) and the phosphorylation of nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) in LPS-treated REC. Furthermore, the results of immunocytofluorescence showed that BBR significantly inhibited the nuclear translocation of NF-κB p65 induced by LPS treatment. In conclusion, the protective effects of BBR on LPS-induced inflammatory responses in REC may be due to its ability to suppress the TLR4-mediated NF-κB and MAPK signaling pathways. These findings suggest that BBR can be used as an anti-inflammatory drug to treat inflammation induced by SARA.


2018 ◽  
Vol 19 (7) ◽  
pp. 2027 ◽  
Author(s):  
Jingyu He ◽  
Xianyuan Lu ◽  
Ting Wei ◽  
Yaqian Dong ◽  
Zheng Cai ◽  
...  

Hedyotis diffusa is a folk herb that is used for treating inflammation-related diseases in Asia. Previous studies have found that iridoids in H. diffusa play an important role in its anti-inflammatory activity. This study aimed to investigate the anti-inflammatory effect and potential mechanism of five iridoids (asperuloside (ASP), asperulosidic acid (ASPA), desacetyl asperulosidic acid (DAA), scandoside methyl ester (SME), and E-6-O-p-coumaroyl scandoside methyl ester (CSME)) that are presented in H. diffusa using lipopolysaccharide (LPS)—induced RAW 264.7 cells. ASP and ASPA significantly decreased the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in parallel with the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-6 mRNA expression in LPS-induced RAW 264.7 cells. ASP treatment suppressed the phosphorylation of the inhibitors of nuclear factor-kappaB alpha (IκB-α), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). The inhibitory effect of ASPA was similar to that of ASP, except for p38 phosphorylation. In summary, the anti-inflammatory effects of ASP and ASPA are related to the inhibition of inflammatory cytokines and mediators via suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, which provides scientific evidence for the potential application of H. diffusa.


Author(s):  
Adek Zamrud Adnan ◽  
Muhammad Taher ◽  
Tika Afriani ◽  
Annisa Fauzana ◽  
Dewi Imelda Roesma ◽  
...  

 Objective: The aim of this study was to investigate in vitro anti-inflammatory activity of tinocrisposide using lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophage cells. Tinocrisposide is a furano diterpene glycoside that was isolated in our previous study from Tinospora crispa.Methods: Anti-inflammatory effect was quantified spectrometrically using Griess method by measuring nitric oxide (NO) production after the addition of Griess reagent.Results: The sample concentrations of 1, 5, 25, 50, and 100 μM and 100 μM of dexamethasone (positive control) have been tested against the LPS-stimulated RAW 264.7 cells, and the results showed NO level production of 39.23, 34.00, 28.9, 20.25, 16.3, and 13.68 μM, respectively, and the inhibition level of 22.67, 33.00, 43.03, 60.10, 68.00, and 73%, respectively.Conclusions: From the study, it could be concluded that tinocrisposide was able to inhibit the formation of NO in the LPS-stimulated RAW 264.7 cells in concentration activity-dependent manner, with half-maximal inhibition concentration 46.92 μM. It can be developed as anti-inflammatory candidate drug because NO is a reactive nitrogen species which is produced by NO synthase. The production of NO has been established as a mediator in inflammatory diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Gyeong-Eun Hong ◽  
Jin-A. Kim ◽  
Arulkumar Nagappan ◽  
Silvia Yumnam ◽  
Ho-Jeong Lee ◽  
...  

Scutellaria baicalensisGeorgi has been used as traditional medicine for treating inflammatory diseases, hepatitis, tumors, and diarrhea in Asia. Hence, we investigated the anti-inflammatory effect and determined the molecular mechanism of action of flavonoids isolated from KoreanS. baicalensisG. in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine cytotoxicity of the flavonoids at various concentrations of 10, 40, 70, and 100 µg/mL. No cytotoxicity was observed in RAW 264.7 cells at these concentrations. Furthermore, the flavonoids decreased production of inflammatory mediators such as inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6, and tumor necrosis factor-alpha and inhibited phosphorylation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-induced RAW 264.7 cells. Moreover, to identify the differentially expressed proteins in RAW 264.7 cells of the control, LPS-treated, and flavonoid-treated groups, two-dimensional gel electrophoresis and mass spectrometry were conducted. The identified proteins were involved in the inflammatory response and included PRKA anchor protein and heat shock protein 70 kD. These findings suggest that the flavonoids isolated fromS. baicalensisG. might have anti-inflammatory effects that regulate the expression of inflammatory mediators by inhibiting the NF-κB signaling pathway via the MAPK signaling pathway in RAW 264.7 cells.


Sign in / Sign up

Export Citation Format

Share Document