Experimental simulation of tsunami surge and its interaction with coastal structure

2019 ◽  
Vol 11 (2) ◽  
pp. 258-280
Author(s):  
Omolbanin Farahmandpour ◽  
Abdul Kadir Marsono ◽  
Parham Forouzani ◽  
Masine Md. Tap ◽  
Suhaimi Abu Bakar

Following the tsunamis occurred in Japan (2011) and Indian Ocean (2004), investigating interaction between coastal structures and tsunamis became necessary. Although several attempts have been made to estimate the tsunami forces acting on the coastal structures, there still remain inconsistencies among the published design guidelines. This research includes an experimental study to investigate the interaction between a tsunami surge and a coastal structure. The tsunami surge was generated using a novel dam-break system, capable of generating higher tsunami surges than the previous simulations. The relations between surge velocity, surge depth, and surge-induced pressure on the structure were presented. In the surge-induced pressure–time histories, there were three identified force components, namely, run-up, impulsive and quasi-steady hydrodynamics. Furthermore, this research presents a comparison made between the experimental results and existing tsunami guidelines. The ratio of impulsive force to hydrodynamic force was found around 2.4 for each tsunami surge. The hydrodynamic forces were found to be higher with respect to those determined using the ‘Federal Emergency Management Agency’ FEMA P646 guidelines, whereas they were approximately in agreement with those obtained by FEMA 55. Moreover, the results showed that the ‘Structural Design Method of Building for Tsunami Resistance’ overestimates the impulsive force.

Author(s):  
Steven Nolan ◽  
Marco Rossini ◽  
Chase Knight ◽  
Antonio Nanni

AbstractWithin the last century, coastal structures for infrastructure applications have traditionally been constructed with timber, structural steel, and/or steel-reinforced/prestressed concrete. Given asset owners’ desires for increased service-life; reduced maintenance, repair and rehabilitation; liability; resilience; and sustainability, it has become clear that traditional construction materials cannot reliably meet these challenges without periodic and costly intervention. Fiber-Reinforced Polymer (FRP) composites have been successfully utilized for durable bridge applications for several decades, demonstrating their ability to provide reduced maintenance costs, extend service life, and significantly increase design durability. This paper explores a representative sample of these applications, related specifically to internal reinforcement for concrete structures in both passive (RC) and pre-tensioned (PC) applications, and contrasts them with the time-dependent effect and cost of corrosion in transportation infrastructure. Recent development of authoritative design guidelines within the US and international engineering communities is summarized and a examples of RC/PC verses FRP-RC/PC presented to show the sustainable (economic and environmental) advantage of composite structures in the coastal environment.


Author(s):  
Jun Tang ◽  
Yongming Shen

Coastal vegetation can not only provide shade to coastal structures but also reduce wave run-up. Study of long water wave climb on vegetation beach is fundamental to understanding that how wave run-up may be reduced by planted vegetation along coastline. The present study investigates wave period influence on long wave run-up on a partially-vegetated plane slope via numerical simulation. The numerical model is based on an implementation of Morison’s formulation for rigid structures induced inertia and drag stresses in the nonlinear shallow water equations. The numerical scheme is validated by comparison with experiment results. The model is then applied to investigate long wave with diverse periods propagating and run-up on a partially-vegetated 1:20 plane slope, and the sensitivity of run-up to wave period is investigated based on the numerical results.


2017 ◽  
Vol 107 (04) ◽  
pp. 231-234
Author(s):  
K. Erlach ◽  
E. Sheehan ◽  
S. Hartleif

In der Stückgutindustrie lassen sich die acht Gestaltungsrichtlinien der Wertstrommethode nach Erlach hervorragend anwenden. In der Prozessindustrie weist die Produktion jedoch häufig andere Merkmale (beispielsweise eine Kuppelproduktion) auf, die neue Herausforderungen an die Wertstrommethode stellen. Aufbauend auf den acht Gestaltungsrichtlinien des Wertstromdesigns werden in diesem Fachbeitrag Handlungsempfehlungen für die Anwendung der Wertstrommethode in der Prozessindustrie diskutiert.   The eight design guidelines of Erlach‘s Value Stream Design Method work well in streamlining operations in the piece-good industry. In the process and chemical industries, however, production systems exhibit different characteristics, like joint production, that present challenges for the eight step value stream design method. Building on the eight design guidelines, this article discusses the deficits of this method in the process industries and gives recommendations for its adaptatio.


Author(s):  
Valentina Laface ◽  
Giovanni Malara ◽  
Felice Arena ◽  
Ioannis A. Kougioumtzoglou ◽  
Alessandra Romolo

The paper addresses the problem of deriving the nonlinear, up to the second order, crest wave height probability distribution in front of a vertical wall under the assumption of finite spectral bandwidth, finite water depth and long-crested waves. The distribution is derived by relying on the Quasi-Deterministic representation of the free surface elevation in front of the vertical wall. The theoretical results are compared against experimental data obtained by utilizing a compressive sensing algorithm for reconstructing the free surface elevation in front of the wall. The reconstruction is pursued by starting from recorded wave pressure time histories obtained by utilizing a row of pressure transducers located at various levels. The comparison shows that there is an excellent agreement between the proposed distribution and the experimental data and confirm the deviation of the crest height distribution from the Rayleigh one.


2013 ◽  
Vol 724 ◽  
pp. 259-283 ◽  
Author(s):  
G. Mirshekari ◽  
M. Brouillette ◽  
J. Giordano ◽  
C. Hébert ◽  
J.-D. Parisse ◽  
...  

AbstractA fully instrumented microscale shock tube, believed to be the smallest to date, has been fabricated and tested. This facility is used to study the transmission of a shock wave, produced in a large (37 mm) shock tube, into a 34 $\mathrm{\mu} \mathrm{m} $ hydraulic diameter and 2 mm long microchannel. Pressure microsensors of a novel design, with gigahertz bandwidth, are used to obtain pressure–time histories of the microchannel shock wave at five axial stations. In all cases the transmitted shock wave is found to be weaker than the incident shock wave, and is observed to decay both in pressure and velocity as it propagates down the microchannel. These results are compared with various analytical and numerical models, and the best agreement is obtained with a Navier–Stokes computational fluid dynamics computation, which assumes a no-slip isothermal wall boundary condition; good agreement is also obtained with a simple shock tube laminar boundary layer model. It is also found that the flow developing within the microchannel is highly dependent on conditions at the microchannel entrance, which control the mass flux entering into the device. Regardless of the micrometre dimensions of the present facility, shock wave propagation in a microchannel of that scale exhibits a behaviour similar to that observed in large-scale facilities operated at low pressures, and the shock attenuation can be explained in terms of accepted laminar boundary models.


1981 ◽  
Vol 59 (10) ◽  
pp. 1380-1390 ◽  
Author(s):  
J. M. Dewey ◽  
D. J. McMillin

High speed photogrammetry has been used to measure the particle trajectories in the flows resulting from the interaction of two identical explosively produced spherical shock waves. It is postulated that the interaction simulated the reflection of a spherical shock from an ideal nonenergy-absorbing surface. The "ideal" reflections were compared with reflections from two types of ground surface. From the observed particle trajectories the particle velocities, gas densities, and hydrostatic, dynamic, and total pressures in the complex air flows behind the shock interactions have been computed. These flows are described as two dimensional fields at fixed times and as time histories at fixed locations. The Mach stem shocks at the ground surfaces were weaker than those at corresponding positions near the interaction planes, but the magnitudes of the flow properties in these waves decreased more slowly and, at later times, became greater than those in the waves at the interaction planes. Computed pressure–time histories were compared to measurements made using electronic transducers and good agreement was found.


Author(s):  
Julien De Rouck ◽  
Peter Troch ◽  
Björn Van de Walle ◽  
Marcel R. A. Van Gent ◽  
Luc Van Damme ◽  
...  

Author(s):  
Chee-Hoe Foong ◽  
Marian Wiercigroch ◽  
William F. Deans

Abstract The elimination of chatter is one of the major aims in machining to improve geometrical accuracy and surface finish. In this study, occurrence of chatter was investigated experimentally using a specially designed rig by examining time histories of the cutting and thrust force components. A broad experimental study was conducted using brass, cast iron and aluminium samples. It was found that by changing the horizontal stiffness of the rig, the thrust force variations (in the vertical direction) were completely eliminated for the cast iron samples. A systematic analysis of the chip formation for the aluminium alloy is presented.


2006 ◽  
Vol 50 (04) ◽  
pp. 311-333 ◽  
Author(s):  
S. Sutulo ◽  
C. Guedes Soares

The paper provides the results of model tests planned with an optimized experimental design method. Captive-model tests have been carried out according to such a design on a computerized planar-motion carriage with a model of a fast catamaran with five varying factors (drift angle, rate-of-yaw amplitude, sinkage, trim and heel angles) and with all six force/moment components measured at each run. The measured values were used after preprocessing for construction of polynomial regression models for all force components acting upon the catamaran's hulls. It is demonstrated that the optimized experimental design method allows rather complicated mathematical models for maneuvering hydrodynamics forces to be obtained from captive model tests at a reasonable level of effort.


Sign in / Sign up

Export Citation Format

Share Document