scholarly journals C16, a novel sinomenine derivatives, promoted macrophage reprogramming toward M2-like phenotype and protected mice from endotoxemia

2021 ◽  
Vol 35 ◽  
pp. 205873842110267
Author(s):  
Ping Ni ◽  
Yue-Qin Liu ◽  
Jin-Yu Man ◽  
Wang Li ◽  
Shan-Shan Xue ◽  
...  

Macrophage plays a critical part in host defense, tissue repair, and anti-inflammation; Macrophage reprogramming is responsible for disease development or regression. We aimed to clarify the effect of sinomenine-4-hydroxy-palmitate (C16), on macrophage reprogramming and anti-inflammatory in endotoxemia model. According to a structure modification of SIN (Sinomenine), C16 was found. Then, based on the endotoxin model, the mice liver and kidney toxicity was evaluated and serum cytokines level of IL-6 (Interleukin-6), TNF-α (Tumor necrosis factor-α), and IL-1β (Interleukin-1β) were measured by ELISA (Enzyme linked immunosorbent assay). Then, we confirmed the effect of C16 on macrophages reprogramming, we used the flow cytometry to test the effect of C16 on macrophages apoptosis in vitro. Then, iNOS (Inducible nitric oxide synthase), M1-type related cytokines, such as IL-1β, TNF-α, and M2-type related cytokines, such as Arg-1 (Arginase-1), CD206, Fizz1, and Ym1 was detected, which expressed in ANA-1 and primary peritoneal macrophages. To further explore the molecular mechanism of C16 in reprogramming of macrophages from M1 toward M2 phenotype, the expression of STAT1 (signal transducer and activator of Transcription 1), STAT3, ERK1/2 (extracellular signal regulated kinase1/2), AKT, p38, and its corresponding phosphorylation were determined by western blot. Our results demonstrated that C16 improved the survival rate of LPS- (lipopolysaccharide) challenged mice and decreased the inflammatory cytokines expression; After C16 treatment, the expression of M1 phenotype correlation factors decreased significantly, while the expression of M2 phenotype correlation factors increased significantly at different levels compared with normal group. It indicated that C16 reprogram macrophages phenotype from M1 toward M2 following LPS stimulus. Furthermore, the results also showed that C16 showed anti-inflammatory effect by inhibiting LPS-induced p38, AKT and STAT1 phosphorylation and contributing ERK1/2 activation. C16 promoted macrophage reprogramming toward M2-like phenotype via p-p38/p-AKT or STAT1 signals pathway and C16 might be a valid candidate for inflammatory disease.

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


2011 ◽  
Vol 89 (10) ◽  
pp. 759-766 ◽  
Author(s):  
Horacio Rivera ◽  
Martha S. Morales-Ríos ◽  
Wendy Bautista ◽  
Mineko Shibayama ◽  
Víctor Tsutsumi ◽  
...  

There has been a recently increase in the development of novel stilbene-based compounds with in vitro anti-inflamatory properties. For this study, we synthesized and evaluated the anti-inflammatory properties of 2 fluorinated stilbenes on carbon tetrachloride (CCl4)-induced acute liver damage. To achieve this, CCl4 (4 g·kg–1, per os) was administered to male Wistar rats, followed by either 2-fluoro-4′-methoxystilbene (FME) or 2,3-difluoro-4′-methoxystilbene (DFME) (10 mg·kg–1, per os). We found that although both of the latter compounds prevented cholestatic damage (γ-glutamyl transpeptidase activity), only DFME showed partial but consistent results in the prevention of necrosis, as assessed by both alanine aminotransferase activity and histological analysis. Since inflammatory responses are mediated by cytokines, mainly tumour necrosis factor α (TNF-α), we used the Western blot technique to determine the action of FME and DFME on the expression level of this cytokine. The observed increase in the level of TNF-α caused by CCl4 administration was only prevented by treatment with DFME, in agreement with our biochemical findings. This result was confirmed by measuring interleukin-6 (IL-6) levels, since the expression of this protein depends on the level of TNF-α. In this case, DFME completely blocked the CCl4-induced increase of IL-6. Our results suggest that DFME possesses greater anti-inflammatory properties in vivo than FME. DFME constitutes a possible therapeutic agent for liver disease and could serve as a template for structure optimization.


2017 ◽  
Vol 96 (5) ◽  
pp. 586-594 ◽  
Author(s):  
Y. Liu ◽  
T. Zhang ◽  
C. Zhang ◽  
S.S. Jin ◽  
R.L. Yang ◽  
...  

Immunologic response plays an important role in orthodontic tooth movement (OTM) and relapse. Nonsteroidal anti-inflammatory drugs, such as aspirin, affect immune cells and clinical orthodontic treatment. However, the mechanisms by which nonsteroidal anti-inflammatory drugs regulate immune cells to affect orthodontic relapse are unclear. In this study, male Sprague-Dawley rats were grouped as relapse and relapse + aspirin for 10 d after 14 d of OTM. Silicone impressions of the rats’ maxillary dentitions were obtained to record the distance of OTM at the indicated time point. CD4+ T lymphocytes in spleen were examined by flow cytometry. Serum levels of type 1 T-helper (Th1) cell–associated cytokines tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ) were determined through enzyme-linked immunosorbent assay. The effects of aspirin on CD4+ T and Th1 cells were also analyzed in vitro. Aspirin treatment significantly reduced the relapse rate. More interestingly, injection of CD25 neutralizing antibody basiliximab or TNF-α inhibitor etanercept can significantly reduce the relapse rate as well. Correspondingly, aspirin treatment significantly accelerated the decrease of orthodontic force–induced secretion of TNF-α and IFN-γ in serum and the expression of TNF-α and IFN-γ in periodontal ligament during relapse. Furthermore, aspirin treatment in vitro significantly repressed the differentiation of CD4+ T and Th1 cells. Overall, results indicated that aspirin treatment can block orthodontic relapse by regulating Th1 cells.


2015 ◽  
Vol 43 (02) ◽  
pp. 269-287 ◽  
Author(s):  
Kun-Cheng Li ◽  
Yu-Ling Ho ◽  
Guan-Jhong Huang ◽  
Yuan-Shiun Chang

Lobelia chinensis Lour (LcL) is a popular herb that has been widely used as folk medicine in China for the treatment of fever, lung cancer, and inflammation for hundreds of years. Recently, several studies have shown that the anti-inflammatory properties were correlated with the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from the NF-κB pathway. The aim of this study was to evaluate the anti-oxidative and anti-inflammatory activities of L. chinensis. Both suppressive activities on LPS-induced nitric oxide production in RAW264.7 macrophages in vitro and the acute rat lung injury model in vivo were studied. The results showed that the methanol extract of LcL and its fractions within the range of 62.5–250 μg/mL did not induce cytotoxicity (p < 0.001). The ethyl acetate fraction of LcL showed better NO inhibition activity than other fractions. On the other hand, the Lc-EA (62.5, 125, 250 mg/kg) pretreated rats showed a decrease in the pro-inflammatory cytokines (TNF-α, IL-β, IL-6) and inhibited iNOS, COX-2 expression through the NF-κB pathway. These results suggested that L. chinensis exhibited an anti-inflammatory effect through the NF-κB pathways.


2017 ◽  
Vol 86 (3) ◽  
pp. 223-230 ◽  
Author(s):  
Jan Hošek ◽  
Kristýna Šebrlová ◽  
Petra Kaucká ◽  
Ondřej Peš ◽  
Eva Táborská

Quaternary benzophenanthridine alkaloids are known to have a wide range of biological effects, including antimicrobial, antifungal, anti-inflammatory, and antitumour activities. However, only sanguinarine and chelerythrine have been studied intensively. The aim of this study was to evaluate the anti-inflammatory potential of the five minor quaternary benzophenanthridine alkaloids sanguilutine, sanguirubine, chelirubine, chelilutine, and macarpine in vitro and to compare them with more thoroughly studied sanguinarine and chelerythrine. Before making cell-based assays, the cytotoxicity of the alkaloids was evaluated. The anti-inflammatory potential of the chosen alkaloids was evaluated as for their ability to modulate the lipopolysaccharide-induced secretion of tumour necrosis factor α (TNF-α) in the macrophage-like cell line THP-1. The cyclooxygenase (COX)-1 and COX-2 inhibitory activities were also measured. The results indicate that the presence of a methylenedioxy ring attached at carbon (C)7-C8 is important for reducing the secretion of TNF-α. Interestingly, this effect did not show a simple dependence on concentration. The selected alkaloids showed little or no anti-COX activity. The results obtained from the present experiments may provide additional information useful in understanding the structure-to-activity relationship of the quaternary benzophenanthridine alkaloids. The anti-inflammatory potential and the cytotoxic effect are driven by the presence of a methylenedioxy ring attached at C7-C8 and C2-C3, respectively.


Author(s):  
Sha-Sha Wang ◽  
Shao-Yan Zhou ◽  
Xiao-Yan Xie ◽  
Ling Zhao ◽  
Yao Fu ◽  
...  

Abstract Background As the dry rhizome of Anemone raddeana Regel, Rhizoma Anemones Raddeanae (RAR), which belongs to Ranunculaceae, is usually used to treat wind and cold symptoms, hand-foot disease and spasms, joint pain and ulcer pain in China. It is well known that the efficacy of RAR can be distinctly enhanced by processing with vinegar due to the reduced toxicity and side effects. However, the entry of vinegar into liver channels can cause a series of problems. In this paper, the differences in the acute toxicity, anti-inflammatory and analgesic effects between RAR and vinegar-processed RAR were compared in detail. The changes in the chemical compositions between RAR and vinegar-processed RAR were investigated, and the mechanism of vinegar processing was also explored. Methods Acute toxicity experiments were used to examine the toxicity of vinegar-processed RAR. A series of studies, such as the writhing reaction, ear swelling experiment, complete Freund’s adjuvant-induced rat foot swelling experiment and cotton granuloma, in experimental mice was conducted to observe the anti-inflammatory effect of vinegar-processed RAR. The inflammatory cytokines of model rats were determined by enzyme-linked immunosorbent assay (ELISA). Liquid Chromatography-Quadrupole-Time of Flight mass spectrometer Detector (LC-Q-TOF) was used to analyse the chemical compositions of the RARs before and after vinegar processing. Results Neither obvious changes in mice nor death phenomena were observed as the amount of vinegar-processed RAR in crude drug was set at 2.1 g/kg. Vinegar-processed RAR could significantly prolong the latency, reduce the writhing reaction time to reduce the severity of ear swelling and foot swelling, and remarkably inhibit the secretion of Interleukin-1β(IL-1β), Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) proinflammatory cytokines. The content of twelve saponins (e.g., Eleutheroside K) in RAR was decreased after vinegar processing, but six other types (e.g., RDA) were increased. Conclusions These results revealed that vinegar processing could not only improve the analgesic and anti-inflammatory effects of RAR but also reduce its own toxicity. Trial registration Not applicable.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 500 ◽  
Author(s):  
Denise Beconcini ◽  
Francesca Felice ◽  
Ylenia Zambito ◽  
Angela Fabiano ◽  
Anna Maria Piras ◽  
...  

This study aimed at evaluating the anti-inflammatory effect of natural cherry extract (CE), either free or encapsulated in nanoparticles (NPs) based on chitosan derivatives (Ch-der) or poly(lactic-co-glycolic acid) (PLGA), on human umbilical vein endothelial cells (HUVEC). CE from Prunus avium L. was characterized for total polyphenols, flavonoids, and anthocyanins content. CE and CE-loaded NP cytotoxicity and protective effect on lipopolysaccharide (LPS)-stressed HUVEC were tested by water-soluble tetrazolium salt (WST-1) assay. Pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-10, and PGE2) released by HUVEC were quantified by enzyme-linked immunosorbent assay (ELISA). All NP types were internalized into HUVEC after 2 h incubation and promoted the anti-inflammatory effect of free CE at the concentration of 2 µg gallic acid equivalents (GAE)/mL. CE-loaded Ch-der NPs showed the highest in vitro uptake and anti-inflammatory activity, blunting the secretion of IL-6, TNF-α, and PGE2 cytokines. Moreover, all NPs reduced the production of nitric oxide and NLRP3 inflammasome, and had a stronger anti-inflammatory effect than the major corticosteroid dexamethasone. In particular, the results demonstrate that natural CE protects endothelial cells from inflammatory stress when encapsulated in NPs based on quaternary ammonium chitosan. The CE beneficial effects were directly related with in vitro internalization of CE-loaded NPs.


2013 ◽  
Vol 68 (7-8) ◽  
pp. 293-301
Author(s):  
Marcela B. Quilles ◽  
Camila B. A. Carli ◽  
Sandra R. Ananias ◽  
Lucas S. Ferreira ◽  
Livia C. A. Ribeiro ◽  
...  

Palladium(II) complexes are an important class of cyclopalladated compounds that play a pivotal role in various pharmaceutical applications. Here, we investigated the antitumour, anti-inflammatory, and mutagenic effects of two complexes: [Pd(dmba)(Cl)tu] (1) and [Pd(dmba)(N3)tu] (2) (dmba = N,N-dimethylbenzylamine and tu = thiourea), on Ehrlich ascites tumour (EAT) cells and peritoneal exudate cells (PECs) from mice bearing solid Ehrlich tumour. The cytotoxic effects of the complexes on EAT cells and PECs were assessed using the 3-(4,5-dimethylthiazol-3-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The effects of the complexes on the immune system were assessed based on the production of nitric oxide (NO) (Griess assay) and tumour necrosis factor-α (TNF-α), interleukin-12 (IL-12), and interleukin-10 (IL-10) (ELISA). Finally the mutagenic activity was assessed by the Ames test using the Salmonella typhimurium strain TA 98. Cisplatin was used as a standard. The IC50 ranges for the growth inhibition of EAT cells and PECs were found to be (72.8 ± 3.23) μM and (137.65 ± 0.22) μM for 1 and (39.7 ± 0.30) μM and (146.51 ± 2.67) μM for 2, respectively. The production of NO, IL-12, and TNF-α, but not IL-10, was induced by both complexes and cisplatin. The complexes showed no mutagenicity in vitro, unlike cisplatin, which was mutagenic in the strain. These results indicate that the complexes are not mutagenic and have potential immunological and antitumour activities. These properties make them promising alternatives to cisplatin


2018 ◽  
Vol 19 (11) ◽  
pp. 3602 ◽  
Author(s):  
Jae Lee ◽  
Hyunwoong Lim ◽  
Jae Ahn ◽  
Dongsik Jang ◽  
Seung Lee ◽  
...  

In this study, a novel three-dimensional (3D) bone morphogenic protein-2 (BMP-2)-delivering tannylated polycaprolactone (PCL) (BMP-2/tannic acid (TA)/PCL) scaffold with anti-oxidant, anti-inflammatory, and osteogenic activities was fabricated via simple surface coating with TA, followed by the immobilization of BMP-2 on the TA-coated PCL scaffold. The BMP-2/TA/PCL scaffold showed controlled and sustained BMP-2 release. It effectively scavenged reactive oxygen species (ROS) in cells, and increased the proliferation of MC3T3-E1 cells pre-treated with hydrogen peroxide (H2O2). Additionally, the BMP-2/TA/PCL scaffold significantly suppressed the mRNA levels of pro-inflammatory cytokines, including matrix metalloproteinases-3 (MMP-3), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), in lipopolysaccharide (LPS)-induced MC3T3-E1 cells. Furthermore, it showed outstanding enhancement of the osteogenic activity of MC3T3-E1 cells through increased alkaline phosphatase (ALP) activity and calcium deposition. Our findings demonstrated that the BMP-2/TA/PCL scaffold plays an important role in scavenging ROS, suppressing inflammatory response, and enhancing the osteogenic differentiation of cells.


2005 ◽  
Vol 2005 (6) ◽  
pp. 349-359 ◽  
Author(s):  
Anselmo Hernández Cruz ◽  
Ronaldo Z. Mendonça ◽  
Vera L. Petricevich

Crotalus durissus terrificusvenom (Cdt) is toxic for a variety of eukaryotic cells, especially at high concentrations. However its effects on host immune cells are not well known. The purpose of this study was to determine the effect of Cdt on functional status and the mediators production in peritoneal macrophages. The effects of Cdt were analyzed in vitro and were detected using functional status of macrophages as determined by the H2O2release, spreading percentage, phagocytic index, vacuole formation, and mediators production. Several functional bioassays were employed: cytotoxicity was determined by taking the lyses percentage and the presence of hydrogen peroxide (H2O2) in macrophages, using the horseradish peroxidase-dependent oxidation of phenol red and nitric oxide (NO) in the supernatants of macrophages by the Griess reaction. The tumor necrosis factor (TNF) activity was detected by measuring its cytotoxic activity on L929 cells, and the production the level of other cytokines was assayed using enzyme-linked immunosorbent assay. In vitro studies revealed that Cdt produced (a) a discrete increase in the release of H2O2and vacuole formation; (b) a decrease in spreading percentage and in the phagocytic index; and (c) an increment in the mediators production. More pronounced increments of IL-6 and TNF were observed after 24 and 48 hours, respectively. Maximum levels of IFN-γand NO were observed after 96 hours. Interestingly, levels of all mediators presented a discreet decrease, as the amount of Cdt was increased. In contrast, the IL-10 levels observed for all doses studied here did not alter. The IL-6/IL-10 ratio may possibly reflect the balance of pro- and anti-inflammatory cytokines in macrophages, which may be manifested in the inflammatory status during the envenoming processes. Taken together, these data indicate that Cdt have a differential effect on macrophage activation and that this venom is a potent inhibitor of anti-inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document