scholarly journals Crotalus durissus terrificusVenom Interferes With Morphological, Functional, and Biochemical Changes in Murine Macrophage

2005 ◽  
Vol 2005 (6) ◽  
pp. 349-359 ◽  
Author(s):  
Anselmo Hernández Cruz ◽  
Ronaldo Z. Mendonça ◽  
Vera L. Petricevich

Crotalus durissus terrificusvenom (Cdt) is toxic for a variety of eukaryotic cells, especially at high concentrations. However its effects on host immune cells are not well known. The purpose of this study was to determine the effect of Cdt on functional status and the mediators production in peritoneal macrophages. The effects of Cdt were analyzed in vitro and were detected using functional status of macrophages as determined by the H2O2release, spreading percentage, phagocytic index, vacuole formation, and mediators production. Several functional bioassays were employed: cytotoxicity was determined by taking the lyses percentage and the presence of hydrogen peroxide (H2O2) in macrophages, using the horseradish peroxidase-dependent oxidation of phenol red and nitric oxide (NO) in the supernatants of macrophages by the Griess reaction. The tumor necrosis factor (TNF) activity was detected by measuring its cytotoxic activity on L929 cells, and the production the level of other cytokines was assayed using enzyme-linked immunosorbent assay. In vitro studies revealed that Cdt produced (a) a discrete increase in the release of H2O2and vacuole formation; (b) a decrease in spreading percentage and in the phagocytic index; and (c) an increment in the mediators production. More pronounced increments of IL-6 and TNF were observed after 24 and 48 hours, respectively. Maximum levels of IFN-γand NO were observed after 96 hours. Interestingly, levels of all mediators presented a discreet decrease, as the amount of Cdt was increased. In contrast, the IL-10 levels observed for all doses studied here did not alter. The IL-6/IL-10 ratio may possibly reflect the balance of pro- and anti-inflammatory cytokines in macrophages, which may be manifested in the inflammatory status during the envenoming processes. Taken together, these data indicate that Cdt have a differential effect on macrophage activation and that this venom is a potent inhibitor of anti-inflammatory response.

2021 ◽  
Vol 35 ◽  
pp. 205873842110267
Author(s):  
Ping Ni ◽  
Yue-Qin Liu ◽  
Jin-Yu Man ◽  
Wang Li ◽  
Shan-Shan Xue ◽  
...  

Macrophage plays a critical part in host defense, tissue repair, and anti-inflammation; Macrophage reprogramming is responsible for disease development or regression. We aimed to clarify the effect of sinomenine-4-hydroxy-palmitate (C16), on macrophage reprogramming and anti-inflammatory in endotoxemia model. According to a structure modification of SIN (Sinomenine), C16 was found. Then, based on the endotoxin model, the mice liver and kidney toxicity was evaluated and serum cytokines level of IL-6 (Interleukin-6), TNF-α (Tumor necrosis factor-α), and IL-1β (Interleukin-1β) were measured by ELISA (Enzyme linked immunosorbent assay). Then, we confirmed the effect of C16 on macrophages reprogramming, we used the flow cytometry to test the effect of C16 on macrophages apoptosis in vitro. Then, iNOS (Inducible nitric oxide synthase), M1-type related cytokines, such as IL-1β, TNF-α, and M2-type related cytokines, such as Arg-1 (Arginase-1), CD206, Fizz1, and Ym1 was detected, which expressed in ANA-1 and primary peritoneal macrophages. To further explore the molecular mechanism of C16 in reprogramming of macrophages from M1 toward M2 phenotype, the expression of STAT1 (signal transducer and activator of Transcription 1), STAT3, ERK1/2 (extracellular signal regulated kinase1/2), AKT, p38, and its corresponding phosphorylation were determined by western blot. Our results demonstrated that C16 improved the survival rate of LPS- (lipopolysaccharide) challenged mice and decreased the inflammatory cytokines expression; After C16 treatment, the expression of M1 phenotype correlation factors decreased significantly, while the expression of M2 phenotype correlation factors increased significantly at different levels compared with normal group. It indicated that C16 reprogram macrophages phenotype from M1 toward M2 following LPS stimulus. Furthermore, the results also showed that C16 showed anti-inflammatory effect by inhibiting LPS-induced p38, AKT and STAT1 phosphorylation and contributing ERK1/2 activation. C16 promoted macrophage reprogramming toward M2-like phenotype via p-p38/p-AKT or STAT1 signals pathway and C16 might be a valid candidate for inflammatory disease.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 768
Author(s):  
Maddalena Sguizzato ◽  
Francesca Ferrara ◽  
Supandeep Singh Hallan ◽  
Anna Baldisserotto ◽  
Markus Drechsler ◽  
...  

Mangiferin is a natural glucosyl xanthone with antioxidant and anti-inflammatory activity, making it suitable for protection against cutaneous diseases. In this study ethosomes and transethosomes were designed as topical delivery systems for mangiferin. A preformulation study was conducted using different surfactants in association with phosphatidylcholine. Vesicle dimensional distribution was monitored by photon correlation spectroscopy, while antioxidant capacity and cytotoxicity were respectively assessed by free radical scavenging analysis and MTT on HaCaT keratinocytes. Selected nanosystems were further investigated by cryogenic transmission electron microscopy, while mangiferin entrapment capacity was evaluated by ultracentrifugation and HPLC. The diffusion kinetics of mangiferin from ethosomes and transethosomes evaluated by Franz cell was faster in the case of transethosomes. The suitability of mangiferin-containing nanovesicles in the treatment of skin disorders related to pollutants was investigated, evaluating, in vitro, the antioxidant and anti-inflammatory effect of ethosomes and transethosomes on human keratinocytes exposed to cigarette smoke as an oxidative and inflammatory challenger. The ability to induce an antioxidant response (HO-1) and anti-inflammatory status (IL-6 and NF-kB) was determined by RT-PCR and immunofluorescence. The data demonstrated the effectiveness of mangiferin loaded in nanosystems to protect cells from damage. Finally, to gain insight into the keratinocytes’ uptake of ethosome and transethosome, transmission electron microscopy analyses were conducted, showing that both nanosystems were able to pass intact within the cells.


2002 ◽  
Vol 11 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Vera L. Petricevich

The purpose of this study was to investigate the effects ofTityus serrulatusvenom (TSV) on murine peritoneal macrophages evaluated in terms of activation. The effects of crude TSV were analysed by detection of cytokines, oxygen intermediate metabolites (H2O2) and nitric oxide (NO) in supernatants of peritoneal macrophages. Several functional bioassays were employed including anin vitromodel for envenomating: cytotoxicity of TSV was assessed using the lyses percentage. Tumor necrosis factor (TNF) activity was assayed by measuring its cytotoxic activity on L-929 cells, and interleukin-6 (IL-6) and interferon-γ (IFN-γ) were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages incubated with TSV and subsequently exposed to either lipopolysaccharide or IFN-γ. Incubation of macrophages with TSV increased production of IL-6 and IFN-γ in a dose-dependent manner. TNF production was not detected in supernatants treated with TSV at any concentration. The increase in IL-6 secretion was not associated with concentration-dependent cytoxicity of TSV on these cells. These data suggest that the cytotoxicity does not appear to be the main cause of an increased cytokine production by these cells. Although NO is an important effector molecule in macrophage microbicidal activity, the inducing potential of the test compounds for its release was found to be very moderate, ranging from 125 to 800 mM. Interestingly, NO levels of peritoneal macrophages were increased after IFN-γ. Moreover, NO production had an apparent effect on macrophage activity. The results obtained here also shown that the TSV induces an important elevation in H2O2release. These results combined with NO production suggest that TSV possesses significant immunomodulatory activities capable of stimulating immune functionsin vitro.


2018 ◽  
Vol 51 (6) ◽  
pp. 2575-2590 ◽  
Author(s):  
Gang Zhong ◽  
Ruiming Liang ◽  
Jun Yao ◽  
Jia Li ◽  
Tongmeng Jiang ◽  
...  

Background/Aims: Current drug therapies for osteoarthritis (OA) are not practical because of the cytotoxicity and severe side-effects associated with most of them. Artemisinin (ART), an antimalarial agent, is well known for its safety and selectivity to kill injured cells. Based on its anti-inflammatory activity and role in the inhibition of OA-associated Wnt/β-catenin signaling pathway, which is crucial in the pathogenesis of OA, we hypothesized that ART might have an effect on OA. Methods: The chondro-protective and antiarthritic effects of ART on interleukin-1-beta (IL-1β)-induced and OA patient-derived chondrocytes were investigated in vitro using cell viability assay, glycosaminoglycan secretion, immunofluorescence, quantitative reverse transcription-polymerase chain reaction, and western blotting. We also used OA model rats constructed by anterior cruciate ligament transection and medial meniscus resection (ACLT+MMx) in the joints to investigate the effects of ART on OA by gross observation, morphological staining, immunohistochemistry, and enzyme-linked immunosorbent assay. Results: ART exhibited potent anti-inflammatory effects by inhibiting the expression of proinflammatory chemokines and cytokines, including interleukin (IL)-1β, IL-6, tumor necrosis factor alpha, and matrix metallopeptidase-13. It also showed favorable chondro-protective effect as evidenced by enhanced cell proliferation and viability, increased glycosaminoglycan deposition, prevention of chondrocyte apoptosis, and degeneration of cartilage. Further, ART inhibited OA progression and cartilage degradation via the Wnt/β-catenin signaling pathway, suggesting that it might serve as a Wnt/β-catenin antagonist to reduce inflammation and prevent cartilage degradation. Conclusion: In conclusion, ART alleviates IL-1β-mediated inflammatory response and OA progression by regulating the Wnt/β-catenin signaling pathway. Thereby, it might be developed as a potential therapeutic agent for OA.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5295
Author(s):  
Xinyu Zhao ◽  
Ruyi Chen ◽  
Yueyue Shi ◽  
Xiaoxi Zhang ◽  
Chongmei Tian ◽  
...  

This study aimed to isolate, prepare and identify the main flavonoids from a standardized Smilax glabra flavonoids extract (SGF) using preparative HPLC, MS, 1H NMR and 13C NMR, determine the contents of these flavonoids using UPLC, then compare their pharmacological activities in vitro. We obtained six flavonoids from SGF: astilbin (18.10%), neoastilbin (11.04%), isoastilbin (5.03%), neoisoastilbin (4.09%), engeletin (2.58%) and (−)-epicatechin (1.77%). The antioxidant activity of six flavonoids were evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,2′-Azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS+) radical scavenging activity and ferric reducing antioxidant power (FRAP). In addition, the anti-inflammatory activity of six flavonoids were evaluated by determining the production of cytokines (IL-1β, IL-6), nitric oxide (NO) using enzyme linked immunosorbent assay and the NF-κB p65 expression using Western blotting in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The results showed that (−)-epicatechin, astilbin, neoastilbin, isoastilbin and neoisoastilbin had strong antioxidant activities, not only in DPPH and ABTS+ radicals scavenging capacities, but in FRAP system. Furthermore, all the six flavonoids could significantly inhibit the secretion of IL-1β, IL-6, NO (p < 0.01) and the protein expression of NF-κB p-p65 (p < 0.01) in LPS-stimulated RAW264.7 cells. This study preliminarily verified the antioxidant and anti-inflammatory activities of six flavonoids in S. glabra.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2620
Author(s):  
Mi-Jin Yim ◽  
Jeong Min Lee ◽  
Hyun-Soo Kim ◽  
Grace Choi ◽  
Young-Mog Kim ◽  
...  

Acne vulgaris is a chronic inflammatory condition of skin sebaceous follicles. To explore its effects on acne vulgaris, we investigated the antibacterial and anti-inflammatory activities of Sargassum miyabei Yendo (a brown alga) ethanolic extract (SMYEE) on Cutibacterium acnes (C. acnes)-stimulated inflammatory responses, both in vivo and in vitro. To induce inflammation in vivo, C. acnes was intradermally injected into the dorsal skin of mice, to which SMYEE was applied. The antimicrobial activity of SMYEE was evaluated by the determination of minimum inhibitory concentrations (MICs). To explore in vitro anti-inflammatory effects, HaCaT cells were stimulated with C. acnes after treatment with SMYEE. The levels of IL-8 and the underlying molecular effects in C. acnes-stimulated HaCaT cells were assessed by enzyme-linked immunosorbent assay, Western blotting, and an electrophoretic mobility shift assay. Mouse skin lesions improved after treatment with SMYEE (50 μg/mouse). Neutrophil infiltration was significantly reduced in SMYEE-treated compared to SMYEE-untreated skin lesions. SMYEE reversed the C. acnes-induced increase in IL-8 levels in HaCaT cells and suppressed dHL-60 cell migration. SMYEE also inhibited C. acnes-induced phosphorylation of the extracellular signal-regulated kinase and inhibited activator protein-1 signaling. SMYEE may be a useful treatment for C. acnes-induced acne vulgaris.


2020 ◽  
Vol 8 ◽  
pp. 205031212096056
Author(s):  
Rob Lambkin-Williams ◽  
Alex Mann ◽  
Adrian Shephard

Objectives: Symptoms of sore throat result from oropharyngeal inflammation, for which prostaglandin E2 is a key mediator. Flurbiprofen is a non-steroidal anti-inflammatory that provides sore throat relief. The preliminary objective of this study was to develop an in vitro model for assessing prostaglandin E2 stimulation by viral and bacterial triggers. The primary objective was to investigate the effect of diluted flurbiprofen-containing lozenges on prostaglandin E2 concentrations in stimulated cells. Methods: Prostaglandin E2 production was stimulated in three epithelial cell lines (A549, HEp2, and clonetics bronchial/tracheal epithelial) with influenza A virus (4.5 log10 tissue culture infectious dose50/mL), or bacterial lipopolysaccharide (10µ g/mL) and peptidoglycan (3µ g/mL) and incubated overnight. Prostaglandin E2 levels were assessed by enzyme-linked immunosorbent assay up to 24 h after stimulation. The effect of flurbiprofen 8.75 mg lozenges (diluted to 0.44 mg/mL) on PGE2 production in stimulated cells was assessed in parallel; prior to viral/LPS/PEP stimulation of cells, 300 μL of test product or control was added and incubated for 30 s, 2 and 5 min (and 10 min for bacterial trigger). Prostaglandin E2 levels were measured following stimulation. Results: Viral and lipopolysaccharide/peptidoglycan infection did not consistently stimulate HEp2 cells and bronchial/tracheal epithelial cells to produce prostaglandin E2. Influenza virus, and lipopolysaccharide/peptidoglycan stimulated high prostaglandin E2 concentrations in A549: mean prostaglandin E2 concentration 106.48 pg/mL with viral stimulation vs 33.82 pg/mL for uninfected cells; 83.84 pg/mL with lipopolysaccharide/peptidoglycan vs 71.96 pg/mL for uninfected cells. Flurbiprofen produced significant reductions in virus-stimulated prostaglandin E2 vs stimulated untreated cells at 2 min (p = 0.03). Flurbiprofen produced significant reductions in lipopolysaccharide/peptidoglycan-stimulated prostaglandin E2 concentrations from 30 s (p = 0.02), and at 2, 5 and 10 min (all p < 0.005) vs stimulated untreated cells. Conclusions: A549 cells provide a suitable model for assessment of prostaglandin E2 stimulation by viral and bacterial triggers. Diluted flurbiprofen-containing lozenges demonstrated rapid anti-inflammatory activity in viral- and lipopolysaccharide/peptidoglycan-stimulated A549 cells.


2017 ◽  
Vol 45 (04) ◽  
pp. 847-861 ◽  
Author(s):  
Chia-Yang Li ◽  
Katsuhiko Suzuki ◽  
Yung-Li Hung ◽  
Meng-Syuan Yang ◽  
Chung-Ping Yu ◽  
...  

Aloe, a polyphenolic anthranoid-containing Aloe vera leaves, is a Chinese medicine and a popular dietary supplement worldwide. In in vivo situations, polyphenolic anthranoids are extensively broken down into glucuronides and sulfate metabolites by the gut and the liver. The anti-inflammatory potential of aloe metabolites has not been examined. The aim of this study was to investigate the anti-inflammatory effects of aloe metabolites from in vitro (lipopolysaccharides (LPS)-activated RAW264.7 macrophages) and ex vivo (LPS-activated peritoneal macrophages) to in vivo (LPS-induced septic mice). The production of proinflammatory cytokines (TNF-[Formula: see text] and IL-12) and NO was determined by ELISA and Griess reagents, respectively. The expression levels of iNOS and MAPKs were analyzed by Western blot. Our results showed that aloe metabolites inhibited the expression of iNOS, decreased the production of TNF-[Formula: see text], IL-12, and NO, and suppressed the phosphorylation of MAPKs by LPS-activated RAW264.7 macrophages. In addition, aloe metabolites reduced the production of NO, TNF-[Formula: see text] and IL-12 by murine peritoneal macrophages. Furthermore, aloe administration significantly reduced the NO level and exhibited protective effects against sepsis-related death in LPS-induced septic mice. These results suggest that aloe metabolites exerted anti-inflammatory effects in vivo, and that these effects were associated with the inhibition of inflammatory mediators. Therefore, aloe could be considered an effective therapeutic agent for the treatment of sepsis.


2008 ◽  
Vol 36 (05) ◽  
pp. 899-912 ◽  
Author(s):  
Ting-Yu Wang ◽  
Jun Li ◽  
Jin-Fang Ge ◽  
Chang-Yu Li ◽  
Yong Jin ◽  
...  

Litsea coreana Levl., a traditional Chinese medicine, has long been used for its diverse benefits such as detoxification and detumescence. Total flavonoids from Litsea coreana Levl. (TFLC) are the effective fraction of L. coreana. This study was designed to investigate the anti-inflammatory effects and mechanisms of TFLC against Feund's complete adjuvant (FCA)-induced arthritis in rats. Arthritis was evaluated by secondary paw swelling, polyarthritis index, body weight and histopathologic analysis. Con A- or LPS-stimulated splenocyte proliferation and cytokine (IL-1 and IL-2) production were assessed by MTT assay and activated mouse cell proliferation assay, respectively. The results indicate that therapeutic administration of TFLC (50, 100, 200 mg/kg, ig × 12 days ) could significantly suppress secondary arthritis in rats with adjuvant-induced arthritis (AA). In vivo, TFLC (50, 100, 200 mg/kg, ig × 12 days ) augmented splenocyte proliferation and increased IL-2 production in splenocytes, while reduced IL-1 activity in peritoneal macrophages (PMΦ) of AA rats. In vitro, TFLC at concentrations from 0.005 to 50 μg/ml exerted the same immunoregulatory effects on AA rats as those in vivo. In addition, an attractive feature of TFLC lies in its apparent lack of toxicity. These results suggest that TFLC without toxicity has a significant anti-arthritic effect on AA rats which could be associated with its anti-inflammatory and immunomodulatory properties.


Sign in / Sign up

Export Citation Format

Share Document