scholarly journals Anti-Inflammatory Effect of Cherry Extract Loaded in Polymeric Nanoparticles: Relevance of Particle Internalization in Endothelial Cells

Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 500 ◽  
Author(s):  
Denise Beconcini ◽  
Francesca Felice ◽  
Ylenia Zambito ◽  
Angela Fabiano ◽  
Anna Maria Piras ◽  
...  

This study aimed at evaluating the anti-inflammatory effect of natural cherry extract (CE), either free or encapsulated in nanoparticles (NPs) based on chitosan derivatives (Ch-der) or poly(lactic-co-glycolic acid) (PLGA), on human umbilical vein endothelial cells (HUVEC). CE from Prunus avium L. was characterized for total polyphenols, flavonoids, and anthocyanins content. CE and CE-loaded NP cytotoxicity and protective effect on lipopolysaccharide (LPS)-stressed HUVEC were tested by water-soluble tetrazolium salt (WST-1) assay. Pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-10, and PGE2) released by HUVEC were quantified by enzyme-linked immunosorbent assay (ELISA). All NP types were internalized into HUVEC after 2 h incubation and promoted the anti-inflammatory effect of free CE at the concentration of 2 µg gallic acid equivalents (GAE)/mL. CE-loaded Ch-der NPs showed the highest in vitro uptake and anti-inflammatory activity, blunting the secretion of IL-6, TNF-α, and PGE2 cytokines. Moreover, all NPs reduced the production of nitric oxide and NLRP3 inflammasome, and had a stronger anti-inflammatory effect than the major corticosteroid dexamethasone. In particular, the results demonstrate that natural CE protects endothelial cells from inflammatory stress when encapsulated in NPs based on quaternary ammonium chitosan. The CE beneficial effects were directly related with in vitro internalization of CE-loaded NPs.

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1822
Author(s):  
Andrea Balduit ◽  
Alessandro Mangogna ◽  
Chiara Agostinis ◽  
Gabriella Zito ◽  
Federico Romano ◽  
...  

Background: An aberrant and persistent inflammatory state at the fetal-maternal interface is considered as a key contributor in compromised pregnancies. Decidual endothelial cells (DECs) play a pivotal role in the control of the local decidual inflammation. The aim of the current study was to determine whether dietary supplement with zinc oxide (ZnO), due to its very low adverse effects, may be useful for modulating the inflammatory response in the first trimester of pregnancy. Methods: The anti-inflammatory properties of ZnO in pregnancy were evaluated by in vitro tests on endothelial cells isolated from normal deciduas and on a trophoblast cell line (HTR8/Svneo). The effects of this treatment were analyzed in terms of adhesion molecule expression and inflammatory cytokine secretion, by real time-quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Results: Our data showed that ZnO was able to reduce the inflammatory response of DECs, in terms of vascular cell adhesion molecule-1 (VCAM-1), interleukin (IL)-8, IL-6, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) expression induced by TNF-α stimulation. This compound exerted no effect on intracellular adhesion molecule-1 (ICAM-1) exocytosis induced by TNF-α on stimulated trophoblast cells, but significantly reduced their IL-6 expression. Conclusion: According to these results, it can be suggested that the ZnO supplement, through its modulation of the pro-inflammatory response of DECs, can be used in pregnancy for the prevention of local decidual inflammation.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rosangela Montanaro ◽  
Alessio D’Addona ◽  
Andrea Izzo ◽  
Carlo Ruosi ◽  
Vincenzo Brancaleone

AbstractClodronate is a bisphosphonate agent commonly used as anti-osteoporotic drug. Throughout its use, additional anti-inflammatory and analgesic properties have been reported, although the benefits described in the literature could not solely relate to their inhibition of bone resorption. Thus, the purpose of our in vitro study is to investigate whether there are underlying mechanisms explaining the anti-inflammatory effect of clodronate and possibly involving hydrogen sulphide (H2S). Immortalised fibroblast-like synoviocyte cells (K4IM) were cultured and treated with clodronate in presence of TNF-α. Clodronate significantly modulated iNOS expression elicited by TNF-α. Inflammatory markers induced by TNF-α, including IL-1, IL-6, MCP-1 and RANTES, were also suppressed following administration of clodronate. Furthermore, the reduction in enzymatic biosynthesis of CSE-derived H2S, together with the reduction in CSE expression associated with TNF-α treatment, was reverted by clodronate, thus rescuing endogenous H2S pathway activity. Clodronate displays antinflammatory properties through the modulation of H2S pathway and cytokines levels, thus assuring the control of the inflammatory state. Although further investigation is needed to stress out how clodronate exerts its control on H2S pathway, here we showed for the first the involvement of H2S in the additive beneficial effects observed following clodronate therapy.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Helong Zhao ◽  
Appakkudal Anand ◽  
Ramesh Ganju

Abstract Introduction: Lipopolysaccharide (LPS) is one of the critical factors which induce endothelial inflammation during the pathogenesis of atherosclerosis, endocarditis and sepsis shock induced heart injury. The secretory Slit2 protein and its endothelial receptors Robo1 and Robo4 have been shown to regulate mobility and permeability of endothelial cells, which could be functional in regulating LPS induced endothelial inflammation. Hypothesis: We hypothesized that in addition to regulating permeability and migration of endothelial cells, Slit2-Robo1/4 signaling might regulate other LPS-induced endothelial inflammatory responses. Methods and Results: Using Human Umbilical Vein Endothelial Cells (HUVEC) culture, we observed that Slit2 treatment suppressed LPS-induced secretion of pro-inflammatory cytokines (including GM-CSF), cell adhesion molecule upregulation and monocyte (THP-1 cell) adhesion. With siRNA knock down techniques, we further confirmed that this anti-inflammatory effect is mediated by the interaction of Slit2 with its dominant receptor in endothelial cells, Robo4, though the much lesser expressed minor receptor Robo1 is pro-inflammatory. Our signaling studies showed that downstream of Robo4, Slit2 suppressed inflammatory gene expression by inhibiting the Pyk2 - NF-kB pathway following LPS-TLR4 interaction. In addition, Slit2 can induce a positive feedback to its expression and downregulate the pro-inflammatory Robo1 receptor via mediation of miR-218. Moreover, both in in vitro studies using HUVEC and in vivo mouse model studies indicated that LPS also causes endothelial inflammation by downregulating the anti-inflammatory Slit2 and Robo4 and upregulating the pro-inflammatory Robo1 during endotoxemia, especially in mouse arterial endothelial cells and whole heart. Conclusions: Slit2-Robo1/4 signaling is important in regulation of LPS induced endothelial inflammation, and LPS in turn causes inflammation by interfering with the expression of Slit2, Robo1 and Robo4. This implies that Slit2-Robo1/4 is a key regulator of endothelial inflammation and its dysregulation during endotoxemia is a novel mechanism for LPS induced cardiovascular pathogenesis.


2015 ◽  
Vol 113 (02) ◽  
pp. 350-362 ◽  
Author(s):  
Konstantin A. Krychtiuk ◽  
Lukas Watzke ◽  
Christoph Kaun ◽  
Elisabeth Buchberger ◽  
Renate Hofer-Warbinek ◽  
...  

SummaryLevosimendan is a positive inotropic drug for the treatment of acute decompensated heart failure (HF). Clinical trials showed that levosimendan was particularly effective in HF due to myocardial infarction. Myocardial necrosis induces a strong inflammatory response, involving chemoattractants guiding polymorphonuclear neutrophils (PMN) into the infarcted myocardial tissue. Our aim was to examine whether levosimendan exhibits anti-inflammatory effects on human adult cardiac myocytes (HACM) and human heart microvascular endothelial cells (HHMEC). Cardiac myocytes and endothelial cells were stimulated with interleukin-1β (IL)-1β (200 U/ml) and treated with levosimendan (0.1–10 μM) for 2–48 hours. IL-1β strongly induced expression of IL-6 and IL-8 in HACM and E-selectin and intercellular adhesion molecule-1 (ICAM-1) in HHMEC and human umbilical vein endothelial cells (HUVEC). Treatment with levosimendan strongly attenuated IL-1β-induced expression of IL-6 and IL-8 in HACM as well as E-selectin and ICAM-1 in ECs. Levosimendan treatment further reduced adhesion of PMN to activated endothelial cells under both static and flow conditions by approximately 50 %. Incubation with 5-hydroxydecanoic acid, a selective blocker of mitochondrial ATP-dependent potassium channels, partly abolished the above seen anti-inflammatory effects. Additionally, levosimendan strongly diminished IL-1β-induced reactive oxygen species and nuclear factor-κB (NF-κB) activity through inhibition of S536 phosphorylation. In conclusion, levosimendan exhibits anti-inflammatory effects on cardiac myocytes and endothelial cells in vitro. These findings could explain, at least in part, the beneficial effects of levosimendan after myocardial infarction.


2013 ◽  
Vol 110 (07) ◽  
pp. 141-152 ◽  
Author(s):  
Yaw Asare ◽  
Erdenechimeg Shagdarsuren ◽  
Johannes Schmid ◽  
Pathricia Tilstam ◽  
Jochen Grommes ◽  
...  

SummaryThe COP9 signalosome (CSN), a multifunctional protein complex involved in the regulation of cullin-RING-E3 ubiquitin ligases (CRLs), has emerged as a regulator of NF-κB signalling. As NF-κB drives the expression of pro-inflammatory and pro-atherosclerotic genes, we probed the yet unknown role of the CSN, in particular CSN5, on NF-KB-mediated atherogenic responses in endothelial cells. Co-immunoprecipitation in human umbilical vein endothelial cells (HUVECs) revealed the presence of a super-complex between IKK and CSN, which dissociates upon TNF-α stimulation. Furthermore, CSN5 silencing enhanced TNF-α-induced IKB-α degradation and NF-κB activity in luci-ferase reporter assays. This was paralleled by an increased NF-KB-driven upregulation of atherogenic chemokines and adhesion molecules, as measured by qPCR and flow cytometry, and translated into an enhanced arrest of THP-1 monocytes on TNF-α-stimulated, CSN5-depleted HUVECs. Reverse effects on NF-κB activity and THP-1 arrest were seen upon CSN5 overexpression. Finally, double-immunostaining confirmed the expression of CSN subunits in the endothelium of human atherosclerotic lesions, and revealed an increased expression of CSN5 which correlated with atheroprogression. In conclusion, endothelial CSN5 attenuates NF-KB-dependent pro-inflammatory gene expression and monocyte arrest on stimulated endothelial cells in vitro, suggesting that CSN5 might serve as a negative regulator of atherogenesis.Note: The review process for this manuscript was fully handled by G. Y. H. Lip, Editor in Chief.


2014 ◽  
Vol 884-885 ◽  
pp. 446-449
Author(s):  
Fu Jiang Chu ◽  
Hong Yan Ma ◽  
Xiao Bao Jin ◽  
Jia Yong Zhu

House fly maggot, Musca domestica (Linnaeus) (Diptera: Muscidae) is one of the traditional Chinese medicine (TCM). In our earlier studies, the anti-inflammatory and anti-atherosclerotic functions of the housefly maggot have been found and also the anti-inflammatory effective parts have been acquired. In this study, the effect of housefly maggot anti-inflammatory parts on proliferation and migration of TNF-α-stimulated human umbilical vein endothelial cells (HUVEC) were investigated. And the results showed that the proliferation index and the migration rates of HUVEC which stimulated by TNF-α were decreased significantly in housefly maggot anti-inflammatory parts treatment group. And also the secretion of vascular endothelial growth factor (VEGF) was decreased too compared with only TNF-α treatment group. Based on the above, the housefly maggot anti-inflammatory parts could regulate the endothelial cell dysfunction through decreasing cell proliferation and migration and a reduction in VEGF expression might plays a key role in this process.


2017 ◽  
Vol 96 (5) ◽  
pp. 586-594 ◽  
Author(s):  
Y. Liu ◽  
T. Zhang ◽  
C. Zhang ◽  
S.S. Jin ◽  
R.L. Yang ◽  
...  

Immunologic response plays an important role in orthodontic tooth movement (OTM) and relapse. Nonsteroidal anti-inflammatory drugs, such as aspirin, affect immune cells and clinical orthodontic treatment. However, the mechanisms by which nonsteroidal anti-inflammatory drugs regulate immune cells to affect orthodontic relapse are unclear. In this study, male Sprague-Dawley rats were grouped as relapse and relapse + aspirin for 10 d after 14 d of OTM. Silicone impressions of the rats’ maxillary dentitions were obtained to record the distance of OTM at the indicated time point. CD4+ T lymphocytes in spleen were examined by flow cytometry. Serum levels of type 1 T-helper (Th1) cell–associated cytokines tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ) were determined through enzyme-linked immunosorbent assay. The effects of aspirin on CD4+ T and Th1 cells were also analyzed in vitro. Aspirin treatment significantly reduced the relapse rate. More interestingly, injection of CD25 neutralizing antibody basiliximab or TNF-α inhibitor etanercept can significantly reduce the relapse rate as well. Correspondingly, aspirin treatment significantly accelerated the decrease of orthodontic force–induced secretion of TNF-α and IFN-γ in serum and the expression of TNF-α and IFN-γ in periodontal ligament during relapse. Furthermore, aspirin treatment in vitro significantly repressed the differentiation of CD4+ T and Th1 cells. Overall, results indicated that aspirin treatment can block orthodontic relapse by regulating Th1 cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Li Chen ◽  
Xiao-Di Fan ◽  
Hua Qu ◽  
Rui-Na Bai ◽  
Da-Zhuo Shi

Endothelial injury, characterized by an inflammatory response and increased permeability, is an initial stage of atherosclerosis (AS). Adenosine 5′-monophosphate (AMP), activated protein kinase (AMPK), and Nuclear Factor kappa B (NF-κB)/Yin Yang 1(YY1) signaling pathways play important roles in the process of endothelial injury. Berberine (BBR), a bioactive alkaloid isolated from several herbal substances, possesses multiple pharmacological effects, including anti-inflammatory, antimicrobial, antidiabetic, anticancer, and antioxidant activities. Previous studies showed a protective effect of berberine against endothelial injury. However, the underlying mechanism remains unclear. We explored the potential effect of BBR on TNF- (tumor necrosis factor-) α-induced injury of human umbilical endothelial cells (HUVECs) and studied its possible molecular mechanism. In the present study, HUVECs were divided into three groups. HUVEC viability was measured with Cell Counting Kit-8 assay. Extracellular lactic dehydrogenase (LDH) concentration was measured with LDH leakage assay. Endothelial microparticle (EMP) numbers were evaluated by flow cytometry analysis assay. The expression of proinflammatory cytokines was evaluated by Enzyme-Linked Immunosorbent Assay (ELISA). The mRNA expression of NF-κB and YY1 was detected by Real-Time PCR (RT-PCR). The protein expression of NF-κB, YY1, and AMPK was detected by immunofluorescence microscopy assay or western blot analysis. The results showed that LDH concentration, EMPs numbers, and the expression of proinflammatory cytokines (IL-6, IL-8, and IL-1β) increased in TNF-α-induced injured HUVECs, but ameliorated by BBR pretreatment. BBR pretreatment upregulated the expression of phosphorylated AMPK and downregulated the expressions of NF-κB and YY1 in injured HUVECs induced by TNF-α, which were offset by the AMPK inhibitor Compound C (CC). The results indicated that BBR protected against TNF-α-induced endothelial injury via the AMPK/NF-κB/YY1 signaling pathway.


2020 ◽  
Vol 19 (8) ◽  
pp. 1605-1610
Author(s):  
Hongtao Liu ◽  
Simin Zheng ◽  
Hongfei Xiong ◽  
Xiaoli Niu

Purpose: To investigate the involvement of ruscogenin in palmitic acid (PA)-induced endothelial cell inflammation. Method: Cultured human umbilical vein endothelial cells (HUVECs) were divided into five groups: control (normal untreated cells), PA (cell treated with palmitic acid), and PA + ruscogenin (1, 10, or 30 μM). Cell viability and apoptosis rate were determined using MTT (3-(4,5)-dimethylthiahiazo(-z-y1)-3,5- di-phenytetrazolium bromide) and flow cytometry assays, respectively. The levels of cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and monocyte chemo-attractant protein-1 (MCP-1) were determined by an enzyme-linked immunosorbent assay. Western blotting and real-time polymerase chain reaction (RT-PCR) were used to evaluate the underlying mechanisms of action. Results: PA treatment decreased the viability of HUVECs and induced apoptosis (p < 0.05). Ruscogenin attenuated PA-induced cell death in a dose-dependent manner (p < 0.05). On the other hand, PA induced an increase in IL-1β, TNF-α, ICAM-1, MCP-1, TXNIP (thioredoxin-interacting protein),as well as NLRP3 (nucleotide oligomerization domain-, leucine-rich repeat- and pyrin domain-containing protein 3), all of which were attenuated by ruscogenin (p < 0.05). Conclusion: Ruscogenin alleviates PA-induced endothelial cell inflammation via TXNIP/NLRP3 pathway, thereby providing an insight into new therapeutic strategies to treat cardiovascular diseases. Keywords: Ruscogenin, Palmitic acid, Endothelial cells, Inflammation, TXNIP, NLRP3, Cardiovascular diseases


Sign in / Sign up

Export Citation Format

Share Document